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In this paper, we introduce and study the concept of
Clairaut Riemannian warped product submersions between
Riemannian warped product manifolds. By generalizing
the notion of Clairaut Riemannian submersions to the
setting of Riemannian warped product submersions, we
define such submersions via a warping function satisfying
a Clairaut relation along geodesics. We establish necessary
and sufficient conditions under which a Riemannian warped
product submersion satisfies the Clairaut condition, showing
that it holds if and only if the girth function defining the
Clairaut condition has a horizontal gradient, one component
of the fibers is totally geodesic, and the other is totally
umbilical with mean curvature vector governed by the warping
function. We examine the geometric consequences of this
structure, study the harmonicity conditions, and the behavior
of the Weyl tensor, etc. Additionally, we illustrate the theory
with several non-trivial examples. In the latter part of the
paper, we explore a detailed study of the curvature behavior
of such submersions. Explicit formulas for the Riemannian,
Ricci, and sectional curvature tensors of the source space
are derived in terms of the geometry of the target and fiber
manifolds, as well as the warping and girth functions. These
computations provide geometric insight into how warping and
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the Clairaut condition affect curvature properties, such as
conformal flatness and the non-positivity of certain mixed
curvatures. We also analyze the conditions for a trivial
warping of the source manifold and for the fibers to be
locally symmetric. Furthermore, the Einstein condition has
been explored in various scenarios. Finally, we also extend
and answer a question posed in [2] to the setting of Clairaut

warped product submersion.
© 2025 Elsevier Masson SAS. All rights are reserved,
including those for text and data mining, Al training, and
similar technologies.

1. Introduction

Isometric immersions and Riemannian submersions have been the subject of extensive
study and have wide applications, including Yang-Mills theory, Kaluza-Klein theory,
supergravity and superstring theories, among others [11]. They are also used to con-
struct some Riemannian manifolds with positive or non-negative sectional curvature,
as well as Einstein manifolds. These notions become more interesting in the context of
product manifolds, as Riemannian warped product manifolds have applications in the
construction of Schwarzschild and Robertson-Walker cosmological models and in the
identification of new classes of Hamiltonian stationary Lagrangian submanifolds [3,8,26].
Every Riemannian manifold, hence the warped product manifold, can be embedded in
some Euclidean space [21,22)9]. Let ¢q : M7 — Np and ¢9 : My — N3 be two smooth
maps between Riemannian manifolds, and let p: Ny — R* and f:=po¢; : M; — R¥
be two smooth functions. Define a smooth map ¢ := (¢1,d2) : My x5 My — Ny X, Ny
between warped product manifolds such that ¢(p1,p2) = (é1(p1), d2(p2)). Then we have
the following notions.

1. If ¢ and ¢ are isometric immersions, then ¢ is also an isometric immersion, namely
warped product isometric immersion.

2. If ¢1 and ¢ are Riemannian submersions, then ¢ is also a Riemannian submersion,
namely Riemannian warped product submersion.

We note that warped product isometric immersions have been significantly explored in
the literature (see [5-7,24,31]). On the other hand, the notion of Riemannian warped
product submersion was recently introduced by Erken and Murathan [9]. Although Erken
et al. studied some properties of such mappings in [10], we still need to explore more
of the geometry of such submersions in depth. With that inspiration, the present paper
investigates various geometric properties and their applications to such submersions.

The Clairaut relation states that for every geodesic ¢ on a surface of revolution M,
(e¥ o ¢)sinw is constant, where e¢? is the distance of a point of M from the axis of
rotation and w is the angle between the tangent vector of the geodesic and the meridian
[29,1]. Motivated by the importance of the Clairaut relation and geodesics, Bishop [4]
introduced the concept of a Clairaut Riemannian submersion as follows.
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Definition 1.1. [4] A Riemannian submersion ¢ between two Riemannian manifolds M
and N is said to be a Clairaut Riemannian submersion, if there exists a function r :
M — R such that for any geodesic ¢ on M, the function (roc)sinw is constant, where
at any t, w(t) is the angle between ¢(¢) and the horizontal space at ¢(t).

Furthermore, Meena and Zawadzki extended this notion to the notion of Clairaut
conformal submersion in [18]. However, for a particular dilation, both become the same.
In this paper, we generalize the concept of Clairaut Riemannian submersions to the no-
tion of Clairaut Riemannian warped product submersions, and explore various geometric
properties of such submersions to fill the gap. Clairaut Riemannian warped product maps
have been recently explored in [32], which are particular Riemannian warped product
maps [20]. Very recently, [13] explored whether Riemannian submersions preserve geo-
metric quantities, such as the intermediate Ricci curvature.

The paper is organized as follows. In Section 2, we recall some basic information
that is needed for subsequent sections. Section 3 is dedicated to the notion of Clairaut
Riemannian warped product submersion with non-trivial examples. It also covers such
submersions with some conformally changed metrics. Section 4 covers harmonic condi-
tions for Clairaut Riemannian warped product submersions. Further, in Section 5, we
derive the curvature relations, mainly for the Riemannian, scalar, and Ricci curvature
tensors. Finally, Section 6 covers various geometric implications and important results,
such as symmetry, conformal flatness, trivial warping, Einstein condition, etc.

2. Preliminaries

In this section, we review some key notions and results that will be required for our
investigation throughout the paper.

Let ¢ : (M™,g9) — (N™,¢') be a smooth map between two Riemannian manifolds,
and let ¢, : T, M — Ty,) N be its derivative map at p. For each regular value q € N,
¢~ 1(q) is an (m — n) dimensional submanifold of M. The submanifolds ¢=1(q), ¢ € N,
are called fibers of ¢. If we assume ¢., is surjective for all p € M, then considering
Vp = ker ¢.,, for any p € M, we obtain an integrable distribution V' corresponding to the
foliation of M determined by the fibers of ¢ such that V, = T,¢~(q), where ¢(p) = q.
Each V), is called the vertical space at p, V the vertical distribution, and the sections of
V the wvertical vector fields. At any p € M, we have T,M =V, ® H,; H, is called the
horizontal space at p, H the horizontal distribution, and the sections of H the horizontal
vector fields. Thus, a vector field on M is called wvertical if it is always tangent to the
fibers. Consequently, a vector field on M is called horizontal if it is always orthogonal to
the fibers. Moreover, a vector field X on M is called basic if X is horizontal and ¢-related
to a vector field X’ on N, i.e. ¢.(X,) = X(;(p) for all p € M. In addition, we denote the
projection morphism on the distributions ker ¢, and (ker ¢.)* by V and H, respectively.
Then we have the following notion of a Riemannian submersion.
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Definition 2.1. Let ¢ : (M™,g) — (N™,¢’) be a smooth map between two Riemannian
manifolds. The map ¢ is called a Riemannian submersion if it satisfies the following
properties:

(7) ¢ is onto.
(%) (¢«)p is a surjective mapping of maximal rank n at any point p € M.
(#ii) ¢ preserves the lengths of the horizontal vectors.

O’Neill [25] defined the fundamental tensors of a Riemannian submersion ¢ defined
as above. These tensors are extensively used to study the geometry of Riemannian sub-
mersions. They are (1,2)-tensors on M, and are given by the following formulae:

T(E,F)=TgF = HVyvpVF + VVypHF, (1)
A(E,F) = AgF =VVygHEF + HVygVF, (2)

for any vector fields E and F on M, where V denotes the Levi-Civita connection of
(M, g). We also have the following lemmas from [25].

Lemma 2.2. For any vertical vectors U, W and horizontal vectors X,Y on M, the tensor
fields T, A satisfy:

(i) TyW = TwU,

(il) AxY = —Ay X = LV[X,Y].

1

2

Lemma 2.3. If X, Y are basic vector fields on M, ¢-related to X', Y’ respectively, then:
(i) 9(X,Y) =g'(X",Y") o ¢,

(i) H[X,Y] is basic, ¢-related to [ X', Y],

(#7) H(VxY) is a basic vector field corresponding to V'y,Y', where V' is the connection

on N,
(iv) for any vertical vector field U, [X,U] is vertical.

Moreover, if X is basic and U is vertical, then H(VyX) = H(VxU) = AxU.
In addition, from (1) and (2), we have

VW =Ty W + VW, VX =HVyX+TvX,
ViV =AxV +VVxV, VxY =HVxY + AxY, (3)

for X,Y € T(#) and V,W € I'(V), where VyyW = VYV W. On any fiber ¢~1(q), ¢ € N,
V coincides with the Levi-Civita connection with respect to the metric induced by g on
fiber ¢~1(q).
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Observe that T acts on the fibers as the second fundamental form. Restricted to
vertical vector fields, it can be seen that T' = 0 is equivalent to the condition that the
fibers are totally geodesic. A Riemannian submersion is called Riemannian submersion
with totally geodesic fibers if T vanishes identically.

Let {U1,...,Un—n} be an orthonormal frame of V. Then the horizontal vector field

1 m—n
H=— Ty U;
m—n; Uit

is called the mean curvature vector field of the fibers. A Riemannian submersion is called
Riemannian submersion with totally umbilical fibers if

TyW = g(U,W)H

for U, W € I'(V). For any E € I'(TM), Tg and Ag are skew-symmetric operators on
(I'(T'M), g) that reverse horizontal and vertical distributions, in the following sense:

for any D, E,G € T(TM). According to Lemma 2.2, the horizontal distribution H is
integrable if and only if A = 0.

We denote the Riemannian curvature tensor of M, N, the vertical and horizontal
distributions by R, R/, R, and R* respectively. Then we have the following equations
that provide curvature relations between them [30, p. 27-28]:

A

gRU, V)W, F) = g(R(U, V)W, F) = g(Tu F, Ty W) + g(Tv F, Ty W), (4)

g(RU, V)W, X) = g(VuT)y W, X) = g(VvT)u W, X), (5)

9g(R(X,Y)Z,H)=g(R"(X,Y)Z,H) 4+ 29(AzH, AxY)
+9(AvyH,AxZ) — g(AxH, Ay Z), (6)

(

J(R(X.Y)Z, V)= —g((VzA)xY.V) —g(TvZ,AxY)
—9(AxZ,TvY) + g(Ay Z,Tv X), (7)
JRX, V)V, W) = —g(VvA)xY, W) + g(VwA)xY, V)
= 9(AxV, Ay W) + g(Ax W, AyV)

(TvX,TwY) — g(Tw X, TvY), (8)
—g(VxT)vW.Y) = g(VvA) xY, W)

(

+9(Tv X, TwY) — g(AxV, Ay W), 9)

g
+9g

g(R(X, V)Y, W) =

where XY, Z,H € T'(H) and U,V,W, F € T'(V).
Now, we recall the notion of a warped product manifold.



[ A. Roy et al. / Bull. Sci. math. 206 (2026) 103764

Definition 2.4. Let (M{™, g1) and (M2, g2) be two Riemannian manifolds. Let f : My —
R be a positive smooth function. Then warped product My x § My of M; and My is the
Cartesian product M; x M, with the metric g = g1 + f2gs.

More precisely, the Riemannian metric g on M; x y My is defined for vector fields X, Y
on M1 X MQ by

9(X,Y) = g1 (m (X), 7} (V) + f2(m1(-)) g2 (w3 (X), m5(Y))

where 1 : My X My — My and ms : My X Ms — My are projections. We recall that
these projections are submersions. In this case, it can be easily seen that the fibers
{z} x My = 7, *(x) and the leaves M; x {y} = 7, ' (y) are Riemannian submanifolds of
M, x ¢ Ms. For more details, we refer to [26] and [6].

The following lemma describes the Levi-Civita connection on a warped product man-
ifold.

Lemma 2.5. Let M = My Xy My be a warped product manifold and V, V!, and V? denote
the Levi-Civita connections on M, My, and Mas, respectively. If F1, F1 are vector fields
on My and Es, Fy are vector fields on Mo, then:

(i) Vg, Fy is the lift of Vi, Fi,

(ii) Vi, By = Vi, By = 20 By,
(#ii) nor(Vg,Fa) = —g(Fa, F2)(Vin f),
() tan(V g, Fs) is the lift of V, Fs,

where V f denotes the gradient of f.

The fundamental tensors associated with Riemannian submersions play a central role
in the study of Riemannian warped product submersions, in particular. They give rise
to the fundamental equations involving these tensors as follows.

Lemma 2.6. [9] Let ¢ = (¢1,¢2) : M = My x5 My — N = Ny x, Ny be a Rieman-
nian warped product submersion between two Riemannian warped product manifolds. If
U, V; e T(V;) and X;,Y; € T(H;),i = 1,2, then we have

(ZZ Ul,UQ :O,
Uz, Vo) = T5(Uz, Va) — gar (Uz, Vo) H(V In f),
(iv Vl,Xl

Vi,X2) =0=V(Vx,V1), Ax,Vi=Vi(f)/f)X2=H(V, X2),
=V(Vx,V2) = (Xa(f)/f)V2, Ax,Va=0=H(Vy,X1),
(vii) T(Va, Xs) = To(Va, Xa) = Ha(VY, X2),

)
)
):TI(VDXI)7 /H(vVle):Hl(V%/le)y
)
)
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(’UZZZ) A(thl) Al(Xl,Y1)7 H(VX1Y1> = Hl(V}(lyl),

(ir) H(Vx, X2) = (X1(f)/[) X2 = H(Vx, X1), Ax, Xo=0=Ax,X;
(2) A(X2,Y2) = A3(X2,Y2), V(Vin f) =0,

(1) H(Vx,Y2) = Ha(V5,Y2) — gur(Xo, Vo) H(VIn f).

3. Clairaut Riemannian warped product submersions

In this section, we define Clairaut Riemannian warped product submersions and dis-
cuss some non-trivial examples. First, we introduce the notion of Clairaut Riemannian
warped product submersion, motivated by Bishop’s idea of Clairaut Riemannian sub-
mersion [see Definition 1.1].

Definition 3.1. A Riemannian warped product submersion ¢ between two Riemannian
warped product manifolds M = M;x My and N = NyXx,N; is said to be a Clairaut
Riemannian warped product submersion, if there exists a function r : M — R™T such that
for any geodesic ¢ on M, the function (r o ¢)sinw is constant, where at any ¢, w(t) is the
angle between ¢(t) and the horizontal space at ¢(t).

The following proposition gives necessary and sufficient conditions for a curve on a
warped product manifold to be geodesic. This will be used to prove the main result of
this section.

Proposition 3.2. Let ¢ : (M = Myx¢Ms,g) — (N = N1x,N2,9") be a Riemannian
warped product submersion. Let ¢ : I — M be a regular curve on M such that U(t) =
(U1(t),Ua(t)) = Vé(t) and X (t) = (X1(t), Xa(t)) = Hé(t), ie. X; € T(Hq), U; € T(Vy),
i =1,2. Then c is geodesic on M if and only if

7‘[1V1X1X1 + H1V1U1X1 + 141()(17 U1) + T1(U1, U1)
+ HaV2x, Xo + Ha Vi, Xo + As(Xa, Us) + To(Us, Us)

+ leff Xl oy, o zUljﬁf G, — (g(Un, Un) + (X, X2))H(V I ) = 0
and
WV x, Ui + VWV, Uy + Ty (Uy, Xy) Xl;f)Ug
+ W V2x,Us + VoV, Us + Ta(Us, Xo) + 2Ulf(f)U2 =0.

Proof. Let ¢ : I — M, ¢ = (a, 3) be a regular curve on M = M, x yM,, parametrized
by arc length such that ¢(¢t) = U(t) + X(t), where U(t) = Vé(t) and X (t) = Heé(t). Let
X = X1+ Xo and U = Uy + Uy, where X; € T'(H;), U; € T(Vy), @ = 1,2. We know that
c is a geodesic on M if and only if V¢ = 0, that is,
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V(X1+X2+U1+U2)(X1 + X2 + U1 + UQ) =0.

Then, applying Lemma 2.6 and separating the horizontal and vertical parts, we obtain
the required conditions. O

Now, we state and prove the main result of this section.

Theorem 3.3. (The Clairaut condition for Riemannian warped product submersion) Let
¢ = (¢1,02) : (M = Myx¢Ms,g) = (N = Ni1x,N2,9¢") be a Riemannian warped product
submersion with connected fibers. Then ¢ is Clairaut with r = ¥, where ¢ : M — R is
a smooth function (called girth function), if and only if

() Vi is horizontal,
(it) the fibers of ¢1 are totally umbilical with mean curvature vector field Hy =
~V|pr, = —Vinf, and
(#ii) the fibers of ¢o are totally geodesic.

Proof. Let ¢: I — M be a geodesic and for ¢t € I, ¢(t) = U(t) + X (t) = Uy (t) + Ua(t) +
X1(t) 4+ Xa(t). Let w(t) denote the angle in [0, 5] between ¢(¢) and X (t). Then, similar
to the proof of [18, Theorem 5] and [19, Theorem 3.2}, one can show that ¢ is Clairaut
with r = e¥ if and only if we have, along c:

g(U,U)g (c', (qu)c(t)) + g(Th (U1, Un), X1) + 9(T2(Us, Us), Xo) — legf)

9(Uz,Uz) = 0,
(10)

where U(t) = (U1(t), U2(t)) = Vé(t) and X (t) = (X1(t), Xa(t)) = Hé(t) are vertical and

horizontal components of ¢(t), respectively.

Now we proceed to show that Vi is horizontal.

For ¢ : My x My — R, let Vip = Wy + Wy, where W; € T'(M;),i = 1,2. If we consider

any geodesic ¢ : I — M with initial vertical tangent vector, that is, assuming X = 0,

equivalently, X; = 0,X5 = 0, then from (10), we have g(U,U)g(U,V¢) = 0, which

implies that, U(¢) = 0. Hence, 9 is constant on any fiber, as the fibers are connected.

Hence, V4 is horizontal, that is, Wy, Wy are both horizontal. Thus (10) becomes

9(U,U)g (X, (Vl/))c(t)) + g(T1 (U1, U1), X1) + 9(Ta(Ua, Us), Xo) — Xl‘;f)g(

Uy, Us) = 0.

Here g(X,Vw) = g(X1 + Xo, W1 + Wa) = g(Xl,Wl) 4 g(XQ,Wg) and g(U, U) =
g(U1,Uy) + g(Ua, Us). So we have,

g(U1,U1)g(X1, Wh) 4+ g(Ur, Ur)g(X2, Wa) + g(Uz, U)g(X1, W1) + g(Uz, Uz)g(Xo, W)

X1(f)

+ g(T1(Ur,Ur), X1) + g(T2(Uz, Ua), X3) — 7

9(Us,Uz) = 0. (11)
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In the following steps, we establish the remaining statements.
Let us consider the geodesic with initial tangent vector Uy + X1 +A(Uz+ X32), for arbitrary
A # 0. Then from (11), we have

g(U1, Ur)g(X1, Wh) + Ag(Ur, Ur)g(Xa, Wa) + XNg(Usz, Uz)g(X1, Wh)
+ N2 g(Ua, Uz)g(Xa, Wa) + g(T1(Ur, Ur), X1) + Ng(T2(Usz, Us), Xo)

- /\ZXlT(f)g(UQ, Us) = 0. (12)
Subtracting (11) and (12), we obtain
(1= N0, D)o (X W) + (14 8) (02, U)o, 1) = g, 1))

+ (14 A+ 2) (9(Uz, Uz)g(Xo, Wa) — g(T2(Ua, Uz), X5))] = 0,

which must hold for all A # 0, so we must have

9(U1, U1)g (X2, W2) = 0, (13)
oV U)o, 1) — 2 g0, 0) — 0, (14)
and
90, U2)g (X2, W2) — g(Ta(U2,Uz), Xa) = 0. (15)

Using (13), (14) and (15) in (11), we have
9(U1, Ur)g(X1, W1) + g(T1 (U1, Ur), X1) = 0. (16)
Since we have assumed that U, Us, X7, Xy are all non-zero, from (13), we affirm

9(Xo, W3) = 0. Since W5 is horizontal, we have W5 = 0, thus V¢ = Wj. From (14), we
conclude

g(Xth) -

which gives
9(X1,Viy —Vin f)=0.
Since Vi and VIn f are both horizontal vector fields on M7, we have

Vi =Vinf.



10 A. Roy et al. / Bull. Sci. math. 206 (2026) 103764

From (15), we affirm
9(g(Uz, Ua)Wo — T5(Us, Uz), X2) = 0.
As W5 =0, we have
9(12(U2,Uz), X2) = 0. (17)
But T5(Us, Us) is a horizontal vector field on Ms, we have
T2 (U, Us) = 0.

This shows that ¢o has totally geodesic fibers, as if the dimension of the fibers is one;
this is immediate. And if the fibers are of dimension > 2, if V and W are orthogonal
vertical vectors in Ms, then g(V, W) =0and T'(V,W) =T (W, V). Then for Uy =V +W
by (17), we have

g(Ta(V, V), Xa) + g(To(W, W), X2) + 29(To(V, W), X2) = 0. (18)
Similarly, Uy =V — W in (17) yields

9(T2(V, V), Xa) + g(To(W, W), X2) — 29(T>(V, W), X2) = 0. (19)
Taking the difference of (18) and (19), we have for any two orthogonal vertical vector
fields V and W on My, To(V, W) = 0. Thus we can write for any vertical V., W and
horizontal X5 on Mo,

g(To(V, W), X2) =0

and hence To(V, W) = 0, which shows that ¢, has totally geodesic fibers. Again, from
(16), we have

g(g(Ur, U)Wy +T1(Uy,Ur), X1) = 0.
This gives
T1(U1,Ur) = —g(Ur, U)Wy = g(Uy, Ur) (= V).
By the same lines as above, for any vertical vector fields V', W on M,
TV, W) = g(V, W) (=V).

Consequently, the above equation shows that ¢; has totally umbilical fibers with mean
curvature vector field
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Hy = -V
This proves our theorem. 0O
Now, we have the following immediate corollaries.

Corollary 3.4. Let ¢ = (¢1,¢2) : M = My Xy My — N = N1 X Ny be a Clairaut Rie-
mannian warped product submersion with r = e and horizontal integrable distribution.
Let L™ L*2 denote the leaves of the horizontal foliation of Hi and Ha, and FY, FY?
denote the fibers of ¢1 and ¢2, respectively. Then we have the following:

(i) My locally splits as a twisted product M1 Lt T Xy F¥ and consequently Ml, the
universal cover of My, splits as M1 LH Xap Foi.In addition, M2 locally splits as

a product My = L2 x F”2 and consequently M2 LH2 x Fra, Hence, M locally
splits as

M = (LM xy F) xp (L2 x F2).

(i) If Hess(1p) = 0, then we have local splitting of My as M; = L* x F. Hence,
locally

M = (L™ x F*) x4 (L™ x F2) .
Proof. The proof follows from [28, Proposition 3]. O

Corollary 3.5. Let ¢ = (¢1,¢2) : (M = MixyMs,g) — (N = N1x,Na,¢’) be a Clairaut
Riemannian warped product submersion with connected fibers and r = e¥. Let 0 be a
function on N such that for all x € M, we have 0(¢(x)) = 1, then ¢ = (P1,d2) :
(M, g) — (N,0%g") is a Clairaut Riemannian warped product submersion with r = e¥.

Proof. Clearly, for X,Y € H,,,
(0(6(p)))*9'(0: X, 0.Y) = (6(6(p)))?9(X,Y) = g(X,Y)
and hence,
¢ = (91,¢2) : (M, g) = (N,0%¢")

is a Riemannian warped product submersion. In fact, it is a Clairaut Riemannian warped
product submersion by Theorem 3.3. O

Corollary 3.6. Let ¢ = (¢1,¢2) : (M = MixsMs,g9) = (N = Ni1x,N2,9¢") be a Clairaut
Riemannian warped product submersion with connected fibers and r = e¥. Let 0 be a
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positive function on M such that VVO = 0, then ¢ = (¢1,¢2) : (M,0%g) — (N,q') is a
Clairaut Riemannian warped product submersion with r = e¥.

Corollary 3.7. Let ¢ = (¢1,¢2) : (M = MixsMs,g) = (N = N1x,N2,9¢") be a Clairaut
Riemannian warped product submersion with connected fibers and r = e¥. Then ¢ =
(b1, 02) : (M,e 2 g) — (N,g') is a Clairaut Riemannian warped product submersion
with r = 1.

Corollary 3.8. Let ¢ = (¢1,¢2) : (M = My xsMs,g) = (N = N1x,N2,9¢') be a Clairaut
Riemannian warped product submersion with r = e¥. Then, we have the Laplacian of 1,

Ay = ATy,

Proof. Since ¢ is a Clairaut Riemannian warped product submersion, the fibers of ¢ are
connected, V1 is horizontal, and V|ps, = 0. Now, in some neighborhood of a fixed point
p € M, we choose a parallel basis {E1,...,E} . E}nl SARSIRRLE El E}.. .. EZ% ..,

B2 . Em} where {E}}™™ C T(W), {E1}™, 1 C T(Hy), {2y

Cc I'(V2) and {E2 2 ma—nyt1 C T'(H2) denote the orthonormal frames of the vertlcal
and horizontal dlstrlbutlons of ¢1 and ¢2, respectively. Then

mi1—ny mi1—ni

AV = 3 Hess'(ELED) = > (Vi Ve, B

i=1 i=1

mi—ni

==Y 9(VeELVY) =0

i=1
Similarly, we can show that AY2e) = 0 and A™2¢) = 0. This yields Ay = AM1yp. O

Now, we construct some examples of the Clairaut Riemannian warped product sub-
mersions.

Example 3.9. Let ¢ : (M, g) — (N, g’') be a Riemannian submersion with connected and
totally geodesic fibers. Let 6 be a function on N and the metric gg on M given by:

90(X,Y) = g(X,Y), go(X,U)=0, go(UV)=e2"gU,V),

for any X,Y € X"(M), U,V € XY(M). This makes ¢; : (M, gg) — (N,g’) a Clairaut
Riemannian submersion, where ¢1 = ¢ on M. Similarly to [11, Example 1.8], it is
easy to see that the fibers of ¢, are totally umbilical with the mean curvature vector
field Hy = V(0 o ¢2). Now consider ¢ = (¢1,¢2) : (M1 x Mz, h) = (N1x,Na, h'), with
My = (M,gg), My = (M,g), Ny = Ny = (N, ¢’), equipped with warped product metrics
h=go+f>gand b = g +p* g, where f = €?°?2 and p is given by pogy = f. Then ¢ is a
Clairaut Riemannian warped product submersion with 7 = ¥, where V1|5, = V(6o ¢s)
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and V|p, = 0. This gives a wide class for examples of Clairaut Riemannian warped
product submersions, where one can vary ¢s and get new examples.

Example 3.10. Consider a map ¢; : (R*, g1) — (R3,g}), where g1, g} both are standard

metrics, defined by
¢1(x1,x2,I3,x4) - (\/ '1:% + 1‘%,1‘3,1‘4) .

Then ¢, is a Clairaut Riemannian submersion with 7 = €% for § = In (\/ﬁ + x%) The
fibers of ¢ are totally umbilical with mean curvature vector field

0

) 1 0
H=—- - 4+~ | =_Vb§.
! <\/m%+x§a$1 \/x%—l—z%axz)

Also consider the projection map ¢ : (R"*k,gg) — (R™, ¢%), where go, g5 both are the
standard metrics, defined by

¢2(ylay2a"'ayn7yn+17"'7yn+k) = (yl;yQa-“ayn)-

Then ¢4 is a Riemannian submersion with totally geodesic fibers, and hence a Clairaut
Riemannian submersion trivially. Now consider ¢ = (¢1,¢2) : (R*x;R""* g) —
(R¥x,R", ¢"), with ¢ = g1 + f%g2 and ¢’ = g} + p® gh, where f and p are given by
po ¢ = f. Then ¢ is a Clairaut Riemannian warped product submersion with r = e,
where Vi|y, = VO and Vi)[pr, = 0.

Now we classify all the Clairaut Riemannian warped product submersions from R™,
considered as a warped product manifold. We will use the following notation to describe
a bundle map. A fiber bundle (E, B, r, F') is indicated as

F—-FESB

where B is the base space, E is the total space, F' is the fiber, and 7 is the bundle map
of the fiber bundle.

Example 3.11. Let M = R™* M; = R, = [0,00), My = S™. Then M = M, X ¢ Mo,
where f : Ry — R4 : r — r is the warping function and the warped product metric
is ¢ = dr? + r?df?. Then any Clairaut Riemannian warped product submersion ¢ =
(¢1,¢2) : (M = Myx M, g) — (N = Nyx,Na,g') with 7' = e¥ is classified as follows:

(1) N1 = [a,b), for some a,b € R and p: [a,b) — R4 given by p(y) = Z;_ ‘. Then, from

a+ bx

the relation p o ¢; = f, we have ¢1 : Ry — [a,b) defined by ¢1(z) = Tz
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(2) Np =[0,00) =Ry and p: Ry — Ry is a diffeomorphism. Then, from the relation
poor = f, ¢1: Ry — R, is also a diffeomorphism.

In both cases, we have at any p € R, V, = ker(¢14p) = {0} and H, = (ker(d)l*p))J‘ =
{2}, where {2} is the basis of T,R | = R. Also,

hence, Vi|pr, = Vi 12

V= f ror

9
or’
Now, we want ¢ : S™ — N5 to be a Riemannian submersion with totally geodesic fibers.
Assuming 1 < dim(fiber of ¢3) < m — 1, then as a fiber bundle ¢2 is one of the following
types, as classified in [14]:

a) St — §ntl 22, CP(n) forn>2
b) S S4"+3 o2 — QP(n) forn>2
) S — 8% (

(
(
(¢ 3)
(d) 53—>S7 %, 5% (1)
() ST — 515 22, g8 (1)

4. Harmonicity

In this section, we study the harmonicity for Clairaut Riemannian warped product
submersions. To obtain harmonic conditions, we need their second fundamental form,
the tension field, etc. We recall these concepts here. The second fundamental form Vo,
of amap ¢ : (M,g) — (N, g¢’) between two Riemannian manifolds is defined as in [23]

(Vo.)(X,Y) = Vx¢.Y — ¢.VxY

for any local vector fields X,Y on M, where V is the Levi-Civita connection of M and
V is the pullback of the connection V' of N to the induced vector bundle ¢~ (TN).
Furthermore, the tension field 7(¢) is defined as the trace of V¢, that is

m

(6) = S (Vo) (Ei, By,

=1

where {E;}1<i<m is a local orthonormal frame around a point p € M. Moreover, we say
that ¢ is a harmonic map if and only if 7(¢) vanishes at each point p € M. Using these
concepts, we have the following result.

Proposition 4.1. Let ¢ = (¢1,¢2) : (M = MixsMsy,9) — (N = Nix,Na,g') be a
Clairaut Riemannian warped product submersion with v = e¥. Then ¢ is harmonic if
and only if either Hy = 0=V or (m; —ny) = (m2 —ng) =0.
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Proof. Here

mi+ma

7(¢) = trace(Ve.) = Y (Vé.)(Ex, Ex),

k=1

where {E1, ..., Em,+m,} is a basis of (M; X My). Hence,

)L

() = 75 (9) + 70" (9) = V() + 7 (0).

mi1—ni ma—n2

™M)= Y (Ve )(ELE)+ Y (Vé.)(EL E2)

i=1 a=1

(5!, E})) s (mz (22, Eﬁ))

a=1

a=1

g(Es,Eb(—vw) o ( iQ—gwi,Es)w)

a=1

— 4 (m T1<E3,E3>> o (mfz[n(Ez,Ez) - g(E,%,Eswanf)])

—(my — n1)V1/)) + ¢1*( — (mg — nz)V1/)>
= 6. (= {m1 —m) + (m2 — n2)} V).

Also,

mi ma

)= D (VeIELEN+ D> (Ve (B Ep)

j=mi—ni+1 b=mg—ns+1

Consequently,

7(¢) = 7V(¢) + 77H(¢) = bu(—{(m1 — n1) + (M2 — n2)} V) + 0.

This implies that 7(¢) = 0 if and only if ¢.(—{(m1 — n1) + (M2 — n2)} VYY) = 0, that
is, either (my — ny1) + (me2 — n2) = 0 or V¢ = 0. But ¢; and ¢2 are Riemannian
submersions, so m; —ny > 0 and ms —ng > 0, and thus (mq —ny) + (mg —ns2) = 0 gives
(my —n1)=(m2—mn2)=0. O

Thus, we conclude that:
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Corollary 4.2. Let ¢ = (¢1,¢2) : (M = MixsMs,g) = (N = N1x,N2,9¢") be a Clairaut
Riemannian warped product submersion with r = e¥. Then ¢ is harmonic if and only if
either M is a product or dim(M;) = dim(Ny) and dim(Msz) = dim(Na).

5. Curvature relations

In this section, we derive formulae for the Riemann curvatures, Ricci curvatures,
and sectional curvatures for the source manifold M of a Clairaut Riemannian warped
product submersion ¢ with r = e¥. In the sequel, ¢ = (¢1,¢2) : M = My x5 My — N =
Ni x, Ny will denote a Clairaut Riemannian warped product submersion with r = e? and
XY, Zi, Hy € T(Hy), Ui, Vi, Wi, F; € T(V;), 1 <4 < 2. In addition, {E} i =1,...,m; —
ni} CNF(Vl), {E}\j =mi—n1+1,...,m1} CT(H1), {E3la=1,...,ma —na} CT (V)
and {EZ|b = ma—na+1,...,ma} C T'(H2) denote the orthonormal frames of the vertical
and horizontal distributions of ¢; and @5, respectively, in some neighborhood of a fixed
point p € M.

In what follows, R, Ry, and Ry denote the Riemannian curvature tensors of M, M,
and Ms, respectively, and ﬁ, ]3;\1 and .7%\2 denote the Riemannian curvature tensors of
fibers of ¢, ¢1 and ¢o, respectively. Then, by [6], we have the following lemma.

Lemma 5.1. Let M = M; x¢ My be a warped product manifold. Let Hess” denote the
Hessian of f. If E1,F1,G1 € T' (M) and Eq, Fo, Gy € T'(My), then:

(1) R(Ey, F1)G1 = Ri(Ey, F1)GH,

(i6) R(Ey, Fy)Fy = !Bl g,
(i7i) R(Ey1, F1)Fy = R(Fy, Go)Ey =0,
(iv) R(Ey, F2)Gy = — 2252y, (Vf),

(v) R(Es, F2)Ga = Ra(Ea, Fy)Ga + WAL (g(Ey, Go)Fy — g(F, Ga)E).

Using appropriate applications of Lemmas 2.5, 2.6, 5.1, and Clairaut condition of The-
orem 3.3 together with the curvature relations mentioned in Section 2, and performing
some straightforward computations, we obtain the following relations.

Theorem 5.2. Let ¢ = (¢1,¢2) : (M = My x5 Mz, g) = (N = Ny x, Na,g') be a Clairaut
Riemannian warped product submersion with r = e¥. Then for any X;,Y;, Z;, H; €
L(H;), U, Vi, Wi, F; € T(V;), 1 <4 <2, the following relations hold:

(1) R(Uy, Vi, Wi, F1) = Ry(U1, Vi, Wi, Fy) — |VO|*[g(Ur, Fy)g(Vi, Wh)
_g(Ula Wl)g(‘/lyFl)]a
(2) R(Us,Va,Wa, F5) = Ro(Us, Vo, Wa, F2) — 2||V||2[g(Uz, F2)g(Va, Wa)

—g(Uz, Wa)g(Va, F2)],
(3) R(Uy, Vi, W1, X1) = g(Ui, Wh)9(Vv, Vb, X1) — g(Vi, W1)g(Vy, Vi, X1),
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(4) R(Uz, Vo, W5, X5) =0,

(5) R(U1, X1,Y1,V1) = —g(Ur, V1) Hess” (X1, Y1) = X1 (¢)Y1(¢)g(Ur, V1)
+9(Vu, (A(X1, 1)), V1) + g(A(X1, V1), A(Y1, Ur)),

(6) R(Us, X2,Y2,Va) = g(Vu,(A(X2,Y2)), Va) + g(A(X2, Va), A(Ya, Us))
—IVY||? (X2, Y2)g(Us, Va),

() R(X1, Y1, Z1, Hy) = RY(X1, Y1, Z1, Hy) + 2 9(A(Zy, Hy), A(X1, Y1)
+9(A(Y1, Hy), A(X1, Z1)) + 9g(A(X1, H1), A(Y1, Z7)),

(8) R(Xy,Ys, Zo, Hy) = R3(Xy,Ya, Zy, Ho) + 2 g(A(Zy, Hy), A(X32,Y3))
+9(A(Yz, Ha), A(X2, Z2)) + g(A(X2, Ha), A(Ya, Z2)) + [V |? [Q(X% Z2)g(Y2, H2)

—9(Y2, Z2)g(Xa, Hz)],

(9) R(Uy,Us, Vi, Va) = g(Ur, Vi) g(Ua, Va)|[V9)[?,
(10) R(X1,X5,Y1,Ys) = 4 Hess (X1, Y1)g(Xa2, Y2),
(11) R(Uy1,Us, Vo, X1) = ——Hess (U1, X1)9(Us, Va),
(12) R(Uy,Us, Vo, V3) —0——7g(U2,V2) (Vu, Vi, Va),
(13) R(X1,Us,Va,Ur) = —% Hess! (X1, U1)g(Us, Va),
(14) R(X,,Us, Vo, Y1) = f}Hessf(Xl,Yl)g(UQ,Vg),
(15) R(Ur, X2, Y2, V1) = —9(U1,V1) (X2, Y2)||V[[?,
(16) R(Uy, X3, Y, X1) = —4 Hess! (U1, X1)g(Xa, V),
(17) R(X1, Xy,Ys, V1) = — Hessf(Xl,Vl)g(Xg,Yg),
(18) R(X1,Xy,Ys,Y]) = — Hessf(Xl,Yl)g(Xg,Yg),
(19) R(Uy,Us, V1, E1) =0, for any Ey € T(TM,),
(20) R(U1,Uz, Vi, X2) =0,

(21) R(X1,Xs,Y1,E1) =0, for any Ey € T(TM,),
(22) R(X1,X»,Y1,U2) =0,

(23) R(Es,Ga, B, F) =0, for any By € T(TMy), E2,Go € T(TMs) and F € T(TM)
(24) R(Uy,Us, Vo, X2) =0,

(25) R(Uy,Us,Ya,Va) =0,

(26) R(Uy,Us, Y5, Y1) =0,

(27) R(Uy,Us,Y2,Ys) =0,

(28) R(X;,Us, Vo, Eq) =0, for any Ey € T(T M),
(29) R(X1,U2,Y2,E) =0, for any E € T(TM).

Remark 5.3. From Theorem 5.2, we observe that for U;, V;, W; € V;, i = 1,2, we have

VR(U1, Vi, W1) = Ry (U, Vi, W) — [|V]*[g(Va, W)Uy — g(Ur, W) VA,
VR(Us, Vo, Wa) = Ro(Us, Va, Wa) — 2|| V| 2[g(Va, Wa)Us — g(Un, Wa)Va,
HR(Uy, Vi, W1) = g(Ur, W1)Vy, Vb — g(Vi, W1)Vy, Vi,
HR(Uy, Vo, Ws) = 0.
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Let sec, secy, and secy denote the sectional curvatures of M, M7, and Mo, respectively,
and séc, sec; and s€co denote the sectional curvatures of the fibers of ¢, ¢1 and ¢o,
respectively. Then, by direct computation using Theorem 5.2, the following relations for
the sectional curvature can be obtained.

Corollary 5.4. Let ¢ = (¢1,p2) : (M = My x5 My, g) = (N = Ny x,Na,g') be a Clairaut
Riemannian warped product submersion with r = e¥. Then for any X;,Y;, Z;, H; €
T(H,;), U;, Vi, Wi, F; € T(V;), 1 < i < 2, the following relations hold:

) = secy (Ur, Vi) = séer (Un, V1) — [[V[2,
sec(Us, Vo) = [secQ(U2,V'2) — IVel?] = [séea(U, V2) = 2 |V 0P

= vy | Ri (X0, Y2 Y2, ) — 8AGK, V)]

— U1 ]1*[Hess” (X1, X1)+(X1 (%)) ]-S-IIAX1U1|I2
[CARRE

lA(X2,Uz)|? 2
T — IVYI©

)

sec(Xy, Yz) = W[Rz(Xz,Yz,Yz,Xz) 3||A(X2,Y2)||2] = [IVyI%,
)=
) =

Now, we compute the Ricci curvatures using Theorem 5.2. Let Ric, Ricy, and Rics
denote the Ricci curvatures of M, M;, and Ma, respectively. And fﬁc, Ric; and Ric,
denote the Ricci curvature of fibers of ¢, ¢ and ¢, respectively. And Ric’(X;,Y;) =
Ricrange ¢,. (0ixXi, ¢ixY5), for i = 1,2. Then, we have the following relations.

Corollary 5.5. Let ¢ = (¢1,¢2) : (M = My x s My, g) — (N = N1 x,Na,¢') be a Clairaut
Riemannian warped product submersion with r = e¥. Then for any X;,Y;, Z;, H; €
T(H;), U;, Vi, Wi, F; € T(V;), 1 < i < 2, the following hold:

(1) Ric(Ur, Vi) =Ricy (U1, Vi) = (m1 — ny +mo) ||V 79(Ur, Vi)
— (U1, V) AM: (1) + trace™® [g(A(.,U), A(, V1)),
(2) Ric(Uy, Vo) =Ricy(Us, Va) + trace™ {g(A(.,Ug),A(.,Vz))}
— (A9 + (m1 =1+ 2ma — 1o = 1)[[VY|?) g(Us, Va),

(3) Ric(X1,Y1) =Ric™ (X1, Y1) = [ma + (m1 —n1)] [Hessw(Xh Y1) + Xl(w)Yl(w)}
AV (A(X0, V) - Btrace™ [g(A(X1,.), AY,))]
+trace™ [g(A(X1,), A(V,)].

(4) Ric(Xa,Y2) =Ric™*(Xs, Ya) — {(ml — 1 +mg) ||V + A”W} 9(X2,Ys)

+ v (A(Xa, Y2) — Btrace™ [g(A(Xs,.), A(Ya, )]
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+ trace” |g(A(Xa,), A(V2, )]

Proof. Recall that {E}i = 1,...,m; —ni} C T(Vy), {EN']l|j =m;—ny+1,...,m} C
T(H1), {E%la = 1,...,mg —na} C T(Vs) and {EZ|b = ma —na +1,...,ma} C ['(Ha)
denote the orthonormal frames of the vertical and horizontal distributions of ¢1 and ¢o,
respectively, in some neighborhood of a fixed point p € M. Then,

mi—mni mi
Ric(U,Vi) = Y R(E/,U1,Vi,E})+ Y R(E}, U, W1,E})
i=1 j=mi—ni+1
ma2—ng mao _ B
+ > R(ELULVLED+ > RELULVLED).  (20)
b=mo—no+1

Using Theorem 5.2, we compute

S OR(ELUL VLB = Y [fu(B]L UL Vi, B = VYl (9(B! Bg(Ur, Vi)

%

— 9(BL,Vi)g(Us, ED))]

= Ric1 (U1, Vi) — (my =y — 1)|[V9|*g(Ur, ), (21)
> R(E},Uy,Vi,E})=> R(Wi,Ej, E},Uy)
- ,
fz[ 9(Vi,Up) Hess” (B}, B}) — B} (4) E} ()9 (U1, V1)
+g(VV1(A(Egl7E]1))7U1) +g(AE‘J1V17AE‘JlU1)
—[a% 4 Vol g1, ) +Zg AU A Vi), (22)
> R(E},U,,Vi,E2)=> R(W,E E2, Zg U, Vi)g(E2, E?)||Vy|?

—(ma —n2) ||V 2g(Ur, V1), (23)

and

Y R(E}, UL VAL ER) =Y R(VA, B B U = Y —g(Un, Vi)g(B3, )| V||
b b b

= —na2|| V9l[*g(U1, V1) (24)

Substituting the values from (21), (22), (23) and (24) in (20) we obtain



20 A. Roy et al. / Bull. Sci. math. 206 (2026) 103764

Ric(Uy, Vi) =Ric, (U, Vi) + [(m1 — 1y + mo) V)12 + AMy| (U, 1)

- ZQ(AE; Ur, A V1) (25)

J

This implies (1). Similarly, we can establish (2), (3) and (4). O
6. Geometric implications of curvature relations

This section is dedicated to the applications of the curvature relations obtained in the
previous section. We present each case individually in the subsections.

6.1. Local symmetry

In this subsection, we discuss the local symmetry of the fibers of a Clairaut Rieman-
nian warped product submersion ¢. We know that a Riemannian manifold is locally
symmetric if and only if VR = 0 [27]. Using this fact, we have the following result.

Theorem 6.1. Let ¢ = (¢1,¢2) : (M = My x5 M, g) = (N = N1 X, Na,g') be a Clairaut

Riemannian warped product submersion with r = e¥ and |V4| = 1. If M is locally
symmetric, then the fibers of ¢1 and ¢o are also locally symmetric.

Proof. Since M is symmetric, we have (VgR)(U,V,W) = 0 for all E,UV,W €
I'(ker ¢). This implies that

V(VER)(U,V,W)=0 and H(VgR)(UV,W)=0.
Thus, for any Fq, Uy, Vi, Wy € T'(ker ¢1,), we have

0=V(Vg,R)(Ui,V1,Wr)
=VVg, (R(UL, V1,W1)) = VR(VE, U, Vi,W1) = VR(U, Vg, Vi, Wh)
- VR(U17‘/17VE1W1)'

Employing Equation (3), Lemma 2.5, and Theorem 3.3, the above equation yields

0=VVh (VR(UL, Vi, W1) + HR(Uy, Vi, Wh)) — VR(V Y, Uy, Vi, Wi)
+ R(V, Vi, Wi)g(Ey, Uy) — VR(Uy, Vi, Vi, W1) + R(U1, Vo, Wi )g(Eq, Vi)
- VR(U17 ‘/13 61E1VI/Y1) + R(U17 ‘/13 v’l/})g(Ela Wl)

Using Remark 5.3 and the fact [|[V4]|? = 1 into the above equation, we get
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0 =V, (Ri(U1, Vi, W1)) = VW, (g(Vi, W1)Us) + VYV, (9(Ur, W) VA1)
+ Ty (Ey, HR(Uy, Vi, W)
—Rl( 1,V1,W1)—|-g(V1,W1)VE Ul—g(VE U, W),

— Ry(Uh, vE1V1, W) +9(VE Vi, W)Uy — g(Uy, Wl)vE1V1

— Ry(Uy, Vi, Vs, Wh) + g(Va, Vs W) UL — g(U, V', Wi)VA.

Since we have Ty (Ey, HR(Uy, Vi, W1)) = 0, we conclude that
(Vi R1) (U, Vi, W1) =0

Hence, the fibers of ¢, are locally symmetric. In addition, proceeding similarly, using
Remark 5.3, Lemma 2.5, and Theorem 5.2, we can show that the fibers of ¢o are also
locally symmetric. O

Corollary 6.2. In the setting of the above theorem, the fibers of ¢1 and ¢o are locally
symmetric subspaces of M. Moreover, if we suppose that the leaves of the horizontal
spaces of ¢1 and ¢ are integrable and complete, then they must also be locally symmetric
subspaces of M. Consequently, locally,

M = (LM xy FY) x4 (L2 x FY2),
and the universal covering space of M can be written as a warped product
M = (LM sy FY) xp (L2 x FY2).

Proposition 6.3. Suppose that the fibers of ¢1 and ¢o are complete. If M is a space form
having sectional curvature , then the fibers of ¢1 and ¢2 are also space forms having
sectional curvature (k+1) and (k+2), respectively. In addition, if the horizontal spaces
of 1 and ¢o are integrable and complete, they are also space forms having sectional
curvatures k and (k + 1), respectively.

Corollary 6.4. Under the hypothesis of the above proposition, additionally assuming that
the leaves of the horizontal spaces of ¢1 and ¢2 are integrable and complete, we get to
the following classification:

(i) If k =0, that is, M is isometric to Buclidean space R™1*™M2  then FY1 and FY2 are
isometric to S™ "™ (1) and S22 (%) respectively. Also, LM and L2 must be
totally geodesic submanifolds of R™ ™2 so they must be isometric to R™ and
S™2(1) respectively. Hence, we get

R = (R, S (D) g (870 x 5™ ().
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(ii) If k =1, by a similar argument, we get

v s () o o () i ()

(iii) If k = —1, then we get

Hml-i-mg — (Hnl Xﬂf le—nl) Xf (R’rbg % Smg—nz(l)) .
6.2. Local conformal flatness

Now we turn to establish the relationship between the local conformal flatness of M
and that of the fibers of M; and Ms. First, we recall that a Riemannian manifold (M, g)
is said to be locally conformally flat if every point p € M has a neighborhood that is
conformally equivalent to an open subset of Euclidean space. Now, we prove the following
result.

Theorem 6.5. Let ¢ = (¢1,¢2) : (M = My x5 M, g) = (N = Ny x, Na,g') be a Clairaut
Riemannian warped product submersion with r = e¥. Assume that the fibers of ¢1 and
@2 are of dimension > 4. If M is locally conformally flat, then the fibers of ¢1 and ¢o
are also locally conformally flat.

Proof. To prove our claim, we use an equivalent criterion given in [16, Theorem 3.2 (6)],
which says that: the local conformal flatness of (M™, g),n > 4 is equivalent to: at every
point p € M and for every quadruple of orthogonal vectors {eq, 2, e3, €4},

sec(eq, e2) + sec(es, eq) = sec(eq, e4) + sec(ea, €3).

Let p = (p1,p2) € M and {Uy, V1, W1, F1} C ker(¢i.p,) be four orthogonal vectors in
T,M. Since M is locally conformally flat, we have

sec(Ur, V1) + sec(Wh, F1) = sec(Uy, Fy) + sec(V1, Wh).
Using Corollary 5.4 in the aforementioned equation, we obtain
SéCl(Ul, Vvl) + SéCl(Wl, Fl) = SéCl(Ul, Fl) + SéCl(Vl, Wl)

Note that, as ¢; is a Riemannian submersion, its fibers are submanifolds of M;. Hence,
using the preceding criterion, we conclude that the fibers of ¢, are locally conformally
flat. In addition, one can show the local conformal flatness of the fibers of ¢5 along
similar lines. O

We know that a Riemannian manifold (M™,g),m > 4 is locally conformally flat if
and only if its Weyl tensor is identically zero (for details, see [17]). Hence, we conclude
that:
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Corollary 6.6. Under the hypotheses of Theorem 6.5, if M is locally conformally flat,
then the Weyl tensors of M, ¢1, and ¢ are identically zero. In other words, M, ¢1, and
P2 is Weyl flat.

6.3. Trivial warping

In this subsection, as another application of Theorem 5.2, we discuss some of the
cases where the source manifold M of ¢ admits trivial warping. In what follows, we let
¢ = (p1,¢2) : (M = My x4 Ma,g) = (N = Ny x, Na,g’) be a Clairaut Riemannian
warped product submersion with connected fibers and r = e¥. Recall that dim(M;) =
my, dim(Ms) = mg, dim(N7) = nq, and dim(Nz) = no.

Theorem 6.7. If ¢ is a Clairaut Riemannian warped product submersion between (M =
My x5 Ma,g) and (N = Ny X, No,g') withr = e¥, then the warping function f is trivial
if

(7) ¥ attains mazimum (minimum,), provided sec(U, X) <0
and X € T'(Hy) for my > nq,

(#0) v attains mazimum (minimum), provided sec(X1,Xs2) < 0( > 0) for all X; €
[(H;),i=1,2 for mi = ny.

—~
V

> 0) for allU € T(Vy)

Proof. From Theorem 5.2, we have
R(U1,X1,Y1,V1) = = g(U1, V1) Hess” (X1, Y1) = X1(¢)Y1(v)g (U1, V1)

9(Vu, (Ax, Y1), V1) + g(Ax, V1, Ay, U1),

where Up,V; € T'(Vy) and X1,Y; € T'(H;). Consider parallel orthonormal bases
{E}‘Z =1,...,my — n1} - F(Vl), {Eﬂ] =mp—n1+1,... ,ml} C F(Hl) of F(Ml)
in a neighborhood of some fixed point p € M. Then the aforementioned equation yields,

ZZR (E},E},E},E})
:_Zg(E ZHess E’1 E1 Zg (E} B} ZQ(V%EN‘;F
i J

+§ E 9(Ve (A(E}, E))), E}) +§ § g(A D), A(E] E})).
i
Consequently,

Y sec(B}, Ej) = —(my —n) A — (my —na) [IVOIIT + ) IAE], ED)1%.

]
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We have Ay = AMig) [by Corollary 3.8] and A(EJI,E}) = HV i E} = 0. Also, recall
that V|2 = 0. Thus, we have

Zsec(Eil,E]l) = —(m1 —n1) AY — (my —ny) || VY% (26)
,J
By hypothesis, sec(U, X) < 0 for all U € T'(V;) and X € I'(H;), then sec(E},E}) <0
foralli=1,...,m1 —ny and j = my — nq,...,m;. Then from (26), we have
(m1 = 1) [Aw + V9] = 0. (27)

Fix a smooth function 6 : M — R. Then consider the elliptic operator acting on C*°(M)
with respect to 6, defined in [12] as Ay := A — V6. In particular, choosing § = —1, we
obtain

Ayt = Ay + || VY2
Then from (27), we have

(m1—n1) A_yyp > 0. (28)
Since ¢ is a Riemannian submersion, we know m; —ny > 0.

(%) If (mq —nq) > 0, then from (28), we have A_y > 0 (that is, ¢ is subharmonic
with respect to A_y). Then, invoking the strong maximum principle, we have that
if 4 attains a maximum, then ) is constant.

(#) If my = ny, we use Theorem 5.2 (17), which states that for any X;,Y; € I'(H;), i =
1,2, we have

1
R(X1,X5,Y3, Y1) = 7 Hess’ (X1,Y1)g(X2,Ya).

Proceeding similarly to above, we get

S see(B}, B7) = —na [ A+ | V)]
I

By hypothesis, sec(X1, X2) < Oforall X; € T'(H;), i = 1,2, then ), sec(EN’]l7 E?) <
0 forall j =1,...,my and b = mgy —ng + 1,...,ms, and consequently we have
A_y > 0, that is, 9 is subharmonic. Then, invoking the strong maximum princi-
ple, we see that if ¢ attains a maximum, then ) is constant.

Hence, in both cases M = My x M. O
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Thus, we have the following immediate corollary.

Corollary 6.8. Within the framework of Theorem 6.7, if My is compact, then M has
trivial warping and becomes a product manifold.

Theorem 6.9. Let ¢ be a Clairaut Riemannian warped product submersion between (M =
M, x§Ms,g) and (N = N1 x,Na,¢') withr = e¥. Suppose that M has constant sectional
curvature k and My is compact. Then the warping function f is trivial, and in this case
M and consequently, My and Ms are flat.

Proof. Without loss of generality, we assume that x > 0. If kK < 0, then the argument
follows in a similar way. Since M; is compact, ¥ reaches a maximum and a minimum.
Then by Theorem 6.7, f is trivial and thus M becomes a product. To prove the flatness,
we argue as follows:

For any E;, F; € T'(M;), i = 1,2, we have from Lemma 5.1,

Hess' (Ey, F)

R(ElaFQaFlaEQ): f

9(Fa, E3). (29)

Since f is constant, Hess’ (E1, Fy) = 0. Also, M having constant sectional curvature &
implies that

R(Ey, F5, F1,Ey) = K [Q(EhEz)g(F%Fl) - Q(ElaFl)g(F2aE2)]

Then, (29) gives x g(E1, F1) g(F2, F2) = 0. Thus, £ = 0 and therefore, M is flat. More-
over, Lemma 5.1 ensures that M; and M are flat.

In addition, if k = 0, then by a similar argument, f is constant. Consequently, M, M;
and My are flat by virtue of Lemma 5.1. O

Remark 6.10. Let M denote the universal cover of M. In the aforementioned setup, we
have M = R™ /T'; x R™2 or M = R™ /Ty x R™2 /Ty, where I'; = Iso(R™), i = 1, 2.

Corollary 6.11. Let ¢ = (¢1,¢2) : M = My xy My — N = Ny x, Ny be a Clairaut
Riemannian warped product submersion with connected fibers. Under the hypothesis of
Theorem 6.9, if My is compact, then N has non-positive sectional curvature.

6.4. FEinstein condition

This subsection is devoted to exploring the geometry of Clairaut warped product
submersion when M is Einstein. By [2], we know that a Riemannian manifold (M, g) is
Einstein if its Ricci tensor satisfies Ric = Ag, where A is a constant. Finally, we conclude
the section by investigating a question posed in [2] as an extended set-up of Clairaut
warped product submersion. We start with the following results.
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Theorem 6.12. Let ¢ = (¢1, ¢2) : (M = My x§Ms,g) = (N = N1 x,Na,g") be a Clairaut
Riemannian warped product submersion with connected fibers, integrable horizontal dis-
tribution, and r = e¥. If M has a constant sectional curvature, then the fibers of ¢; are
FEinstein if m; —n; > 3, fori=1,2.

Proof. For any Uy, Vi € T'(Vy), from Corollary 5.5 we have
].:{Aicl(Uh Vi) = RiC(Ul, V1) + [(ml —ny+ m2)||V1/)||2 + AH1¢]Q(U1, Vl)

— ZQ(AE}UDAE;Vl)'
J

Using the fact that M has constant sectional curvature sec, we have
Ric(Uy, V1) = sec(my + mo — 1)g1(Uy, V7).

Also, from the assumption that the horizontal distribution is integrable, we have A = 0.
Thus, from the above equation, we have the following:

fﬁcl(Ul,%) = |(m1 +mg — 1)sec+(m1 —ny + m2)|\VwH2 + Ale}g(Ul,Vl).

If dimension of the fibers of ¢1 is my — ny1 > 3, then invoking Schur’s Lemma, we can
conclude that the fibers of ¢; are Einstein and consequently,

(m1 4 mag — 1) sec+(my —ny +mg)||Vep||* + AM1ep = C (constant) . (30)

By a similar argument, the fibers of ¢o are Einstein if dimension of the fibers of ¢5 is
mo — no > 3 and we get,

(mq 4+ ma — 1)sec+(my —ny + 2ma — ng — 1)||Veh||? + AM1ep = Cy (constant). O
(31)

Corollary 6.13. In the same set-up of Theorem 6.12, we find that v is a distance function
(that is, |[V||? = 1) with constant Avp.

Proof. Comparing the equations (30) and (31), we get Ay = C' (constant) and
(m2 —n2 = 1)|[VY|* = C2 - C1,
which shows that 1 is a distance function. 0O

Theorem 6.14. Let ¢ = (¢1,¢2) : (M = My Xy Ma,g) — (N = N1 X, Na,g’) be a
Clairaut Riemannian warped product submersion with r = e¥ with connected fibers. If
M is Einstein, then the fibers of ¢1 and ¢o have constant scalar curvatures. Moreover,
the scalar curvature restricted to the horizontal space of ¢o is also constant.
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Proof. From Corollary 5.5, we have for Uy, V; € T'(Vy),

Ricy (U1, V1) = Ric(Uy, Vi) + (mq — ny +mo)||V|29(U, Vi)
+ g(Ur, Vi) A% () — Z g(A(E},Uh), A(E}, V1)),

j=mi—ni1+1

If M is Einstein with Ric = Ag, that is Ric(Uy, Vi) = Ag(Ur, V1), then we affirm,

Rica (U1, Vi) = [+ 1 = na -+ ma) [Vl + A% ()] g(0, V)

mi

- Z g(A(Eglle)vA(EglaVl))

j=mi—ni+1

Taking trace over the basis {E}|i = 1,...,m1 —ni} of V;, we have

séc :[A + (m1 — ny + m2) || V|12 + A ()] (my — na)

mi—ni mi

- Y S gAELEN,AELED).

=1 j=mi—mi+1
Differentiating with respect to Uy, we have
VUl sécy =(m1 - nl)le [/\ + (m1 —np + m2)||V1p||2 + AHl’(/)]

mi1—ny mi

YOS o m, acm)

i=1 j=mj—ni1+1

which shows that Vi, séc; = 0 and hence séc; is constant. That is, the fibers of ¢ have
constant scalar curvature. Similarly, we can show that the fibers of ¢ also have constant
scalar curvature.

Now we proceed to prove the last statement.
From Corollary 5.5, we have for Xo,Y5 € I'(Ha),

Ric™ (X, ¥2) = Ric(Xz, Y2) + [(m1 — n1 +ma) [VY|* + AM19] g(Xa, Y2)
- diVVQ (AX2}/2> + Szg(szEbQ’ AY2E13> - Zg<AX2E2’ AY2E2>'
b a
If M is Einstein with Ric = Ag, that is, Ric(Xo, Y2) = Ag(Xs, Y3), then
Ric*?(X2,Y2) = [A + (m1 — ny +ma)||VY|> + AM19] (X2, Y2)
- diVVQ (AXz}/Q) + 3ZQ(AX2E~‘57 AYQEZ%) - ZQ(AX2E27 AYzEg)'
b a

(32)
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Taking trace over the basis {E’g |b=my1 —n; +1,...,ma} C Ha, we have

sec’ = A+ (m1 — ny +ma) [ VO[* + A1) ny

- ;divw (A Ef) + 3;9(AE§E§,AE§EZ?> - zb:g(AEgEga Ap E7). (33)

Differentiating along X € I'(Hs), we get

div™2 (Ric”? (X2)) = V3, sec?z = 0= 3" V%, 9(Ax(E7, E2), Ax(E2, E2)).
a,b

Now, let us take the divergence of (32). Then div**2 Ric**2(X,) = 0, which implies that

Ho

V%Q sec’®2 = 0 and hence sec’? = constant. O

Corollary 6.15. Let ¢ = (¢1,¢2) : (M = My x5 My, g9) = (N = N1 X, Na,g’) be a
Clairaut Riemannian warped product submersion with r = e¥ with connected fibers. If
Y attains the minimum (mazimum), then M = My x; My is a Riemannian product

manifold, provided M is Einstein and mg — (mq1 —nq) < O( > 0).
Proof. By Theorem 6.14, sec’*? is constant. Then employing (33) we obtain,
[)\ + (my —ny +ma)|| V|| + AHl’(/J] ny = p(constant) (34)

Assuming that the leaves of ¢y, that is, L™ are integrable and compact, we have

(ma +my =) [ [96lP+ [ %= [ (e Ana).

L* L* L™

Thus,

(mg +my —ny) / V]| +0 = (1 — Ang) - Vol(L*)

L*1
which implies that

meo +mip — Ny

me it [ IV = = am)

L™

As L™ is compact, there exists some point p = (p1,p2) € M with p; € LMt such
that Vi (p) = 0, which implies ||V (p)||? = 0 and consequently, i = Any. Hence, using
Corollary 3.8, we have from (34),
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(m2 +my —m) | Ve|* + A = 0.

Thus, Ay > 0 as ma+(mq—nq) > 0, that is, ¢ is subharmonic. Then, using the fact that
L™ is compact, we find that ¢ attains a maximum, and consequently, we establish that
1 is constant. If V¢ = 0, we find that v is constant, which implies that f is constant,
and hence M admits a trivial warping. O

Question posed in [2]: In order to build new compact Einstein manifolds from the given
ones, it was questioned in [2]: Does there exist a compact Einstein warped product
manifold with a non-constant warping function? Indeed, Proposition 5 of [15] answers
this question by constructing a non-trivial compact Einstein warped product space.

In analogy, we can ask: Does there exist a compact Einstein warped product manifold
M = M; x5 My admitting a Clairaut Riemannian warped product submersion with
r = e¥? We attempt to answer this question in the following theorem.

Theorem 6.16. Suppose that (L', g1) is a manifold and f is a smooth function on L7
satisfying, for a constant A € R and my, mg,n; € N,

RicM = gy + M2t m) g
g f

then f satisfies
FAf+(mi+me—ni = DVFP+ A2 =p

for a constant u € R. Hence, for a compact Einstein space (L*2, g3) of dimension (mq +
mg — ny) with

Ric*2 = i go,
we can make a compact Einstein warped product space LM X LM2 with
Ric=M\g,

where g = g1+ f2 g2, g1, g2 being the Riemannian metrics on L™ and L*? respectively.
Moreover, if we take compact Einstein manifolds FY* of dimension (m; —ny) and F2
of dimension (ms — ng) satisfying

(ml—nl —|—m2—1)

f2

1
Ric%: = [A+ VAP + ?le} g

and

ml—n1+2m2—n2—2)

f2

Ric"? = {A i IV fII?+ %le} g,
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respectively, then
M = (L’H1 XfL’Hz) Xt (]:'V1 % ]:Vz) ~ (LHI Xf}'Vl) X f (L7‘l1 % fvz)

is a compact Finstein warped product manifold admitting a Clairaut Riemannian warped
product submersion ¢ = (p1, P2) with integrable horizontal distribution, whose fibers are
FY and FY2 and the leaves of the horizontal spaces are L™ and L™? respectively.

To prove the above theorem, we need to prove the following proposition.

Proposition 6.17. Let ¢ = (¢1,¢p2) : (M = My Xy My, g) — (N = N1 x, Na,g’) be a
Clairaut Riemannian warped product submersion with r = e¥ with connected fibers. If
M is Einstein, then the following identity holds for any X; € T'(H1):

Vi, AMp 4 2 Hess? (X, Vi) = [div”l (Hess” +dy) ® cw)} (Xy).
Proof. For X;,Y; € I'(H;), from Corollary 5.5, we have

Ric™ (X1, Y1) = Ric(X1, Y1) + (ma +m1 — ny) [Hessw(Xl, Y1) + Xl(w)yl(w)}

—divV (A(X1, V) = ) g(Ax, Bl Av E]) 43 g(Ap X1, Ap V).
1- . _ |

Since M is Einstein, Ric(X3,Y1) = Ag(Xy,Y1). Thus, we have

Ric™ (X1, Y1) =Ag(X1, Y1) + (ma +my — 1) [Hess¢(X1, Y1) + X1(¢)Y1(¢)]
— divV (A(X1, Y1) = Y g(Ax, B} Ay, E}) +3 Zg(AEJ;Xh Ap1).
i J

(35)

Taking trace over {E~'J1 |j=mi—n1+1,...,mi}, we get
sec™™ =\nj + (my — ny + mo) [AHIQZJ + ||Vz/JH2} - Zdivvl(AE;E;)
J

- ZQ(A@E}, ApE) + 329(141;15}, Ap E}),
i, J

which reduces to

sect = Ay + (ma + my — m) [A 4 [V9I2| = 7 g(Ag B Ap B, (36)

(2]

Also, we can choose a parallel basis while taking the trace and get
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sec’t = Any + (mg +my —ny) [AHW) + ||V¢||2]
Differentiating (36) along X; € I'(H1), we get

Vi, sec™ = (my +my —ny) [V, ATy + Vi VY2

- Z2Q(V§1(AE;E3)7 Ap BY).

Again, using the parallel basis argument, we have

div?* Ric* (X)) = Vi, sec’t = (my 4+ my —ny) [Vﬁ(l AM1e) 4 2 Hess¥ (X, v1/1)].
(37)

Also from (35), we get

Ric™ (X1, V1) = A g(X1, Y3) + (ma +my —n1) (dw ® dip + Hess'/’) (X1, Y1)

— div (A)(X1, Y1) = Y (Vi @ Vi ) (X1, Y1)

—3% (A 0 Ap) (X1, V1),
- . .
which shows that
Ric™™ =\g + (mg +my —ny)(Hess? +dip @ dip) — div¥* (A)
~> (Ve ®Vig) =3 (Ap o Ap). (38)
i J

Now we take the divergence of (38) and get

div** Ric*t = X div?* (g) 4 (mg + m1 — ny) [dile(Hessw +dy ® dz/))}

— div* leVl Zle VE1 ®VE1 —32:d1v7'£1 ApioAp).

J

When acted on X; € I'(H1), this reduces to
div* Ric** (X)) = (mg 4+ my —ny) [dile (Hess? +dip ® dz/J)} (X1). (39)
Comparing (37) and (39), we get

Vi, AMp 4 2 Hess? (X, Vi) = [diVHl (Hess” +dy ® dzp)} (X)). O (40)
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Now we come to the proof of Theorem 6.16. We prove the theorem by extending [15,
Proposition 5], using a similar technique. The required steps follow from Corollary 5.5,
Equation (40), and the fact that A = 0 for a horizontal integrable distribution.
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