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In this paper, we introduce and study the concept of 
Clairaut Riemannian warped product submersions between 
Riemannian warped product manifolds. By generalizing 
the notion of Clairaut Riemannian submersions to the 
setting of Riemannian warped product submersions, we 
define such submersions via a warping function satisfying 
a Clairaut relation along geodesics. We establish necessary 
and sufficient conditions under which a Riemannian warped 
product submersion satisfies the Clairaut condition, showing 
that it holds if and only if the girth function defining the 
Clairaut condition has a horizontal gradient, one component 
of the fibers is totally geodesic, and the other is totally 
umbilical with mean curvature vector governed by the warping 
function. We examine the geometric consequences of this 
structure, study the harmonicity conditions, and the behavior 
of the Weyl tensor, etc. Additionally, we illustrate the theory 
with several non-trivial examples. In the latter part of the 
paper, we explore a detailed study of the curvature behavior 
of such submersions. Explicit formulas for the Riemannian, 
Ricci, and sectional curvature tensors of the source space 
are derived in terms of the geometry of the target and fiber 
manifolds, as well as the warping and girth functions. These 
computations provide geometric insight into how warping and 

* Corresponding author.
E-mail addresses: arkadeeptaroy@hri.res.in (A. Roy), kirankapishmeena@gmail.com (K. Meena), 

hemangimshah@hri.res.in (H.M. Shah).

https://doi.org/10.1016/j.bulsci.2025.103764
0007-4497/© 2025 Elsevier Masson SAS. All rights are reserved, including those for text and data mining, 
AI training, and similar technologies.

https://doi.org/10.1016/j.bulsci.2025.103764
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bulsci
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bulsci.2025.103764&domain=pdf
mailto:arkadeeptaroy@hri.res.in
mailto:kirankapishmeena@gmail.com
mailto:hemangimshah@hri.res.in
https://doi.org/10.1016/j.bulsci.2025.103764


2 A. Roy et al. / Bull. Sci. math. 206 (2026) 103764 

the Clairaut condition affect curvature properties, such as 
conformal flatness and the non-positivity of certain mixed 
curvatures. We also analyze the conditions for a trivial 
warping of the source manifold and for the fibers to be 
locally symmetric. Furthermore, the Einstein condition has 
been explored in various scenarios. Finally, we also extend 
and answer a question posed in [2] to the setting of Clairaut 
warped product submersion.

© 2025 Elsevier Masson SAS. All rights are reserved, 
including those for text and data mining, AI training, and 

similar technologies.

1. Introduction

Isometric immersions and Riemannian submersions have been the subject of extensive 
study and have wide applications, including Yang-Mills theory, Kaluza-Klein theory, 
supergravity and superstring theories, among others [11]. They are also used to con
struct some Riemannian manifolds with positive or non-negative sectional curvature, 
as well as Einstein manifolds. These notions become more interesting in the context of 
product manifolds, as Riemannian warped product manifolds have applications in the 
construction of Schwarzschild and Robertson-Walker cosmological models and in the 
identification of new classes of Hamiltonian stationary Lagrangian submanifolds [3,8,26]. 
Every Riemannian manifold, hence the warped product manifold, can be embedded in 
some Euclidean space [21,22,9]. Let ϕ1 : M1 → N1 and ϕ2 : M2 → N2 be two smooth 
maps between Riemannian manifolds, and let ρ : N1 → R+ and f := ρ ◦ ϕ1 : M1 → R+

be two smooth functions. Define a smooth map ϕ := (ϕ1, ϕ2) : M1 ×f M2 → N1 ×ρ N2
between warped product manifolds such that ϕ(p1, p2) = (ϕ1(p1), ϕ2(p2)). Then we have 
the following notions.

1. If ϕ1 and ϕ2 are isometric immersions, then ϕ is also an isometric immersion, namely 
warped product isometric immersion.

2. If ϕ1 and ϕ2 are Riemannian submersions, then ϕ is also a Riemannian submersion, 
namely Riemannian warped product submersion.

We note that warped product isometric immersions have been significantly explored in 
the literature (see [5--7,24,31]). On the other hand, the notion of Riemannian warped 
product submersion was recently introduced by Erken and Murathan [9]. Although Erken 
et al. studied some properties of such mappings in [10], we still need to explore more 
of the geometry of such submersions in depth. With that inspiration, the present paper 
investigates various geometric properties and their applications to such submersions.

The Clairaut relation states that for every geodesic c on a surface of revolution M , 
(eψ ◦ c) sinω is constant, where eψ is the distance of a point of M from the axis of 
rotation and ω is the angle between the tangent vector of the geodesic and the meridian 
[29,1]. Motivated by the importance of the Clairaut relation and geodesics, Bishop [4] 
introduced the concept of a Clairaut Riemannian submersion as follows.
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Definition 1.1. [4] A Riemannian submersion ϕ between two Riemannian manifolds M
and N is said to be a Clairaut Riemannian submersion, if there exists a function r :
M → R+ such that for any geodesic c on M , the function (r ◦ c) sinω is constant, where 
at any t, ω(t) is the angle between ċ(t) and the horizontal space at c(t).

Furthermore, Meena and Zawadzki extended this notion to the notion of Clairaut 
conformal submersion in [18]. However, for a particular dilation, both become the same. 
In this paper, we generalize the concept of Clairaut Riemannian submersions to the no
tion of Clairaut Riemannian warped product submersions, and explore various geometric 
properties of such submersions to fill the gap. Clairaut Riemannian warped product maps 
have been recently explored in [32], which are particular Riemannian warped product 
maps [20]. Very recently, [13] explored whether Riemannian submersions preserve geo
metric quantities, such as the intermediate Ricci curvature.

The paper is organized as follows. In Section 2, we recall some basic information 
that is needed for subsequent sections. Section 3 is dedicated to the notion of Clairaut 
Riemannian warped product submersion with non-trivial examples. It also covers such 
submersions with some conformally changed metrics. Section 4 covers harmonic condi
tions for Clairaut Riemannian warped product submersions. Further, in Section 5, we 
derive the curvature relations, mainly for the Riemannian, scalar, and Ricci curvature 
tensors. Finally, Section 6 covers various geometric implications and important results, 
such as symmetry, conformal flatness, trivial warping, Einstein condition, etc.

2. Preliminaries

In this section, we review some key notions and results that will be required for our 
investigation throughout the paper.

Let ϕ : (Mm, g) → (Nn, g′) be a smooth map between two Riemannian manifolds, 
and let ϕ∗p : TpM → Tϕ(p)N be its derivative map at p. For each regular value q ∈ N , 
ϕ−1(q) is an (m − n) dimensional submanifold of M . The submanifolds ϕ−1(q), q ∈ N , 
are called fibers of ϕ. If we assume ϕ∗p is surjective for all p ∈ M , then considering 
𝒱p = kerϕ∗p for any p ∈ M , we obtain an integrable distribution 𝒱 corresponding to the 
foliation of M determined by the fibers of ϕ such that 𝒱p = Tpϕ

−1(q), where ϕ(p) = q. 
Each 𝒱p is called the vertical space at p, 𝒱 the vertical distribution, and the sections of 
𝒱 the vertical vector fields. At any p ∈ M , we have TpM = 𝒱p ⊕ ℋp; ℋp is called the 
horizontal space at p, ℋ the horizontal distribution, and the sections of ℋ the horizontal 
vector fields. Thus, a vector field on M is called vertical if it is always tangent to the 
fibers. Consequently, a vector field on M is called horizontal if it is always orthogonal to 
the fibers. Moreover, a vector field X on M is called basic if X is horizontal and ϕ-related 
to a vector field X ′ on N , i.e. ϕ∗(Xp) = X ′

ϕ(p) for all p ∈ M . In addition, we denote the 

projection morphism on the distributions kerϕ∗ and (kerϕ∗)⊥ by 𝒱 and ℋ, respectively. 
Then we have the following notion of a Riemannian submersion.
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Definition 2.1. Let ϕ : (Mm, g) → (Nn, g′) be a smooth map between two Riemannian 
manifolds. The map ϕ is called a Riemannian submersion if it satisfies the following 
properties: 

(i) ϕ is onto.
(ii) (ϕ∗)p is a surjective mapping of maximal rank n at any point p ∈ M .
(iii) ϕ∗ preserves the lengths of the horizontal vectors.

O’Neill [25] defined the fundamental tensors of a Riemannian submersion ϕ defined 
as above. These tensors are extensively used to study the geometry of Riemannian sub
mersions. They are (1, 2)-tensors on M , and are given by the following formulae:

T (E,F ) = TEF = ℋ∇𝒱E𝒱F + 𝒱∇𝒱EℋF, (1)

A(E,F ) = AEF = 𝒱∇ℋEℋF + ℋ∇ℋE𝒱F, (2)

for any vector fields E and F on M , where ∇ denotes the Levi–Civita connection of 
(M, g). We also have the following lemmas from [25].

Lemma 2.2. For any vertical vectors U , W and horizontal vectors X, Y on M , the tensor 
fields T , A satisfy: 

(i) TUW = TWU ,
(ii) AXY = −AY X = 1

2𝒱[X,Y ].

Lemma 2.3. If X, Y are basic vector fields on M , ϕ-related to X ′, Y ′ respectively, then: 

(i) g(X,Y ) = g′(X ′, Y ′) ◦ ϕ,
(ii) ℋ[X,Y ] is basic, ϕ-related to [X ′, Y ′],
(iii) ℋ(∇XY ) is a basic vector field corresponding to ∇′

X′Y ′, where ∇′ is the connection 
on N ,

(iv) for any vertical vector field U , [X,U ] is vertical.

Moreover, if X is basic and U is vertical, then ℋ(∇UX) = ℋ(∇XU) = AXU .

In addition, from (1) and (2), we have

∇V W = TV W + ∇̂V W, ∇V X = ℋ∇V X + TV X, 

∇XV = AXV + V∇XV, ∇XY = ℋ∇XY + AXY, (3)

for X,Y ∈ Γ(ℋ) and V,W ∈ Γ(𝒱), where ∇̂V W = 𝒱∇V W . On any fiber ϕ−1(q), q ∈ N , 
∇̂ coincides with the Levi–Civita connection with respect to the metric induced by g on 
fiber ϕ−1(q).
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Observe that T acts on the fibers as the second fundamental form. Restricted to 
vertical vector fields, it can be seen that T = 0 is equivalent to the condition that the 
fibers are totally geodesic. A Riemannian submersion is called Riemannian submersion 
with totally geodesic fibers if T vanishes identically.

Let {U1, . . . , Um−n} be an orthonormal frame of 𝒱. Then the horizontal vector field

H = 1 
m− n

m−n∑︂
i=1 

TUi
Ui

is called the mean curvature vector field of the fibers. A Riemannian submersion is called 
Riemannian submersion with totally umbilical fibers if

TUW = g(U,W )H

for U,W ∈ Γ(𝒱). For any E ∈ Γ(TM), TE and AE are skew-symmetric operators on 
(Γ(TM), g) that reverse horizontal and vertical distributions, in the following sense:

g(TEF,G) + g(TEG,F ) = 0 and g(AEF,G) + g(AEG,F ) = 0,

for any D,E,G ∈ Γ(TM). According to Lemma 2.2, the horizontal distribution ℋ is 
integrable if and only if A = 0.

We denote the Riemannian curvature tensor of M , N , the vertical and horizontal 
distributions by R, R′, R̂, and R∗ respectively. Then we have the following equations 
that provide curvature relations between them [30, p. 27-28]:

g(R(U, V )W,F ) = g(R̂(U, V )W,F ) − g(TUF, TV W ) + g(TV F, TUW ), (4)

g(R(U, V )W,X) = g((∇UT )V W,X) − g((∇V T )UW,X), (5)

g(R(X,Y )Z,H) = g(R∗(X,Y )Z,H) + 2g(AZH,AXY )

+ g(AY H,AXZ) − g(AXH,AY Z), (6)

g(R(X,Y )Z, V ) = −g((∇ZA)XY, V ) − g(TV Z,AXY )

− g(AXZ, TV Y ) + g(AY Z, TV X), (7)

g(R(X,Y )V,W ) = −g((∇V A)XY,W ) + g((∇WA)XY, V )

− g(AXV,AY W ) + g(AXW,AY V )

+ g(TV X,TWY ) − g(TWX,TV Y ), (8)

g(R(X,V )Y,W ) = −g((∇XT )V W,Y ) − g((∇V A)XY,W )

+ g(TV X,TWY ) − g(AXV,AY W ), (9)

where X,Y, Z,H ∈ Γ(ℋ) and U, V,W,F ∈ Γ(𝒱).
Now, we recall the notion of a warped product manifold.
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Definition 2.4. Let (Mm1
1 , g1) and (Mm2

2 , g2) be two Riemannian manifolds. Let f : M1 →
R be a positive smooth function. Then warped product M1 ×f M2 of M1 and M2 is the 
Cartesian product M1 ×M2 with the metric g = g1 + f2g2.

More precisely, the Riemannian metric g on M1×f M2 is defined for vector fields X,Y

on M1 ×M2 by

g(X,Y ) = g1(π∗
1(X), π∗

1(Y )) + f2(π1(·))g2(π∗
2(X), π∗

2(Y ))

where π1 : M1 × M2 → M1 and π2 : M1 × M2 → M2 are projections. We recall that 
these projections are submersions. In this case, it can be easily seen that the fibers 
{x} ×M2 = π−1

1 (x) and the leaves M1 × {y} = π−1
2 (y) are Riemannian submanifolds of 

M1 ×f M2. For more details, we refer to [26] and [6].
The following lemma describes the Levi-Civita connection on a warped product man

ifold.

Lemma 2.5. Let M = M1×fM2 be a warped product manifold and ∇, ∇1, and ∇2 denote 
the Levi-Civita connections on M , M1, and M2, respectively. If E1, F1 are vector fields 
on M1 and E2, F2 are vector fields on M2, then: 

(i) ∇E1F1 is the lift of ∇1
E1

F1,
(ii) ∇E1E2 = ∇E2E1 = E1(f)

f E2,
(iii) nor(∇E2F2) = −g(E2, F2)(∇ ln f),
(iv) tan(∇E2F2) is the lift of ∇2

E2
F2,

where ∇f denotes the gradient of f .

The fundamental tensors associated with Riemannian submersions play a central role 
in the study of Riemannian warped product submersions, in particular. They give rise 
to the fundamental equations involving these tensors as follows.

Lemma 2.6. [9] Let ϕ = (ϕ1, ϕ2) : M = M1 ×f M2 → N = N1 ×ρ N2 be a Rieman
nian warped product submersion between two Riemannian warped product manifolds. If 
Ui, Vi ∈ Γ(𝒱i) and Xi, Yi ∈ Γ(ℋi), i = 1, 2, then we have 

(i) T (U1, V1) = T1(U1, V1),
(ii) T (U1, U2) = 0,
(iii) T (U2, V2) = T2(U2, V2) − gM (U2, V2) ℋ(∇ ln f),
(iv) T (V1, X1) = T1(V1, X1), ℋ(∇V1X1) = ℋ1(∇1

V1
X1),

(v) T (V1, X2) = 0 = 𝒱(∇X2V1), AX2V1 = (V1(f)/f)X2 = ℋ(∇V1X2),
(vi) T (V2, X1) = 𝒱(∇X1V2) = (X1(f)/f)V2, AX1V2 = 0 = ℋ(∇V2X1),
(vii) T (V2, X2) = T2(V2, X2) = ℋ2(∇2

V2
X2),
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(viii) A(X1, Y1) = A1(X1, Y1), ℋ(∇X1Y1) = ℋ1(∇1
X1

Y1),
(ix) ℋ(∇X1X2) = (X1(f)/f)X2 = ℋ(∇X2X1), AX1X2 = 0 = AX2X1
(x) A(X2, Y2) = A2(X2, Y2), 𝒱(∇ ln f) = 0,
(xi) ℋ(∇X2Y2) = ℋ2(∇2

X2
Y2) − gM (X2, Y2) ℋ(∇ ln f).

3. Clairaut Riemannian warped product submersions

In this section, we define Clairaut Riemannian warped product submersions and dis
cuss some non-trivial examples. First, we introduce the notion of Clairaut Riemannian 
warped product submersion, motivated by Bishop’s idea of Clairaut Riemannian sub
mersion [see Definition 1.1].

Definition 3.1. A Riemannian warped product submersion ϕ between two Riemannian 
warped product manifolds M = M1×fM2 and N = N1×ρN2 is said to be a Clairaut 
Riemannian warped product submersion, if there exists a function r : M → R+ such that 
for any geodesic c on M , the function (r ◦ c) sinω is constant, where at any t, ω(t) is the 
angle between ċ(t) and the horizontal space at c(t).

The following proposition gives necessary and sufficient conditions for a curve on a 
warped product manifold to be geodesic. This will be used to prove the main result of 
this section.

Proposition 3.2. Let ϕ : (M = M1×fM2, g) → (N = N1×ρN2, g
′) be a Riemannian 

warped product submersion. Let c : I → M be a regular curve on M such that U(t) =
(U1(t), U2(t)) = 𝒱 ċ(t) and X(t) = (X1(t), X2(t)) = ℋċ(t), i.e. Xi ∈ Γ(ℋi), Ui ∈ Γ(𝒱i), 
i = 1, 2. Then c is geodesic on M if and only if

ℋ1∇1
X1X1 + ℋ1∇1

U1X1 + A1(X1, U1) + T1(U1, U1)

+ ℋ2∇2
X2X2 + ℋ2∇1

U2X2 + A2(X2, U2) + T2(U2, U2)

+ 2X1(f)
f

X2 + 2U1(f)
f

X2 − (g(U2, U2) + g(X2, X2))ℋ(∇ ln f) = 0

and

𝒱1∇1
X1U1 + 𝒱1∇1

U1U1 + T1(U1, X1) + 2X1(f)
f

U2

+ 𝒱2∇2
X2U2 + 𝒱2∇1

U2U2 + T2(U2, X2) + 2U1(f)
f

U2 = 0.

Proof. Let c : I → M , c = (α, β) be a regular curve on M = M1×fM2, parametrized 
by arc length such that ċ(t) = U(t) + X(t), where U(t) = 𝒱 ċ(t) and X(t) = ℋċ(t). Let 
X = X1 + X2 and U = U1 + U2, where Xi ∈ Γ(ℋi), Ui ∈ Γ(𝒱i), i = 1, 2. We know that 
c is a geodesic on M if and only if ∇ċċ = 0, that is,
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∇(X1+X2+U1+U2)(X1 + X2 + U1 + U2) = 0.

Then, applying Lemma 2.6 and separating the horizontal and vertical parts, we obtain 
the required conditions. □

Now, we state and prove the main result of this section.

Theorem 3.3. (The Clairaut condition for Riemannian warped product submersion) Let 
ϕ = (ϕ1, ϕ2) : (M = M1×fM2, g) → (N = N1×ρN2, g

′) be a Riemannian warped product 
submersion with connected fibers. Then ϕ is Clairaut with r = eψ, where ψ : M → R is 
a smooth function (called girth function), if and only if 

(i) ∇ψ is horizontal,
(ii) the fibers of ϕ1 are totally umbilical with mean curvature vector field H1 =

−∇ψ|M1 = −∇ ln f , and
(iii) the fibers of ϕ2 are totally geodesic.

Proof. Let c : I → M be a geodesic and for t ∈ I, ċ(t) = U(t) + X(t) = U1(t) + U2(t) +
X1(t) + X2(t). Let ω(t) denote the angle in [0, π2 ] between ċ(t) and X(t). Then, similar 
to the proof of [18, Theorem 5] and [19, Theorem 3.2], one can show that ϕ is Clairaut 
with r = eψ if and only if we have, along c:

g(U,U)g
(︂
ċ, (∇ψ)c(t)

)︂
+ g(T1(U1, U1), X1) + g(T2(U2, U2), X2) − X1(f)

f
g(U2, U2) = 0,

(10)
where U(t) = (U1(t), U2(t)) = 𝒱 ċ(t) and X(t) = (X1(t), X2(t)) = ℋċ(t) are vertical and 
horizontal components of ċ(t), respectively.

Now we proceed to show that ∇ψ is horizontal.
For ψ : M1 ×M2 → R, let ∇ψ = W1 + W2, where Wi ∈ Γ(Mi), i = 1, 2. If we consider 
any geodesic c : I → M with initial vertical tangent vector, that is, assuming X = 0, 
equivalently, X1 = 0, X2 = 0, then from (10), we have g(U,U)g(U,∇ψ) = 0, which 
implies that, U(ψ) = 0. Hence, ψ is constant on any fiber, as the fibers are connected. 
Hence, ∇ψ is horizontal, that is, W1,W2 are both horizontal. Thus (10) becomes

g(U,U)g
(︂
X, (∇ψ)c(t)

)︂
+ g(T1(U1, U1), X1) + g(T2(U2, U2), X2) − X1(f)

f
g(U2, U2) = 0.

Here g(X,∇ψ) = g(X1 + X2,W1 + W2) = g(X1,W1) + g(X2,W2) and g(U,U) =
g(U1, U1) + g(U2, U2). So we have,

g(U1, U1)g(X1,W1) + g(U1, U1)g(X2,W2) + g(U2, U2)g(X1,W1) + g(U2, U2)g(X2,W2)

+ g(T1(U1, U1), X1) + g(T2(U2, U2), X2) − X1(f)
f

g(U2, U2) = 0. (11)
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In the following steps, we establish the remaining statements.
Let us consider the geodesic with initial tangent vector U1+X1+λ(U2+X2), for arbitrary 
λ ̸= 0. Then from (11), we have

g(U1, U1)g(X1,W1) + λg(U1, U1)g(X2,W2) + λ2g(U2, U2)g(X1,W1)

+ λ3g(U2, U2)g(X2,W2) + g(T1(U1, U1), X1) + λ3g(T2(U2, U2), X2)

− λ2X1(f)
f

g(U2, U2) = 0. (12)

Subtracting (11) and (12), we obtain

(1 − λ)[g(U1, U1)g(X2,W2) + (1 + λ)
(︃
g(U2, U2)g(X1,W1) − X1(f)

f
g(U2, U2)

)︃
+ (1 + λ + λ2) (g(U2, U2)g(X2,W2) − g(T2(U2, U2), X2))] = 0,

which must hold for all λ ̸= 0, so we must have

g(U1, U1)g(X2,W2) = 0, (13)

g(U2, U2)g(X1,W1) − X1(f)
f

g(U2, U2) = 0, (14)

and

g(U2, U2)g(X2,W2) − g(T2(U2, U2), X2) = 0. (15)

Using (13), (14) and (15) in (11), we have

g(U1, U1)g(X1,W1) + g(T1(U1, U1), X1) = 0. (16)

Since we have assumed that U1, U2, X1, X2 are all non-zero, from (13), we affirm 
g(X2,W2) = 0. Since W2 is horizontal, we have W2 = 0, thus ∇ψ = W1. From (14), we 
conclude

g(X1,W1) − X1(f)
f

= 0

which gives

g(X1,∇ψ −∇ ln f) = 0.

Since ∇ψ and ∇ ln f are both horizontal vector fields on M1, we have

∇ψ = ∇ ln f.
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From (15), we affirm

g(g(U2, U2)W2 − T2(U2, U2), X2) = 0.

As W2 = 0, we have

g(T2(U2, U2), X2) = 0. (17)

But T2(U2, U2) is a horizontal vector field on M2, we have

T2(U2, U2) = 0.

This shows that ϕ2 has totally geodesic fibers, as if the dimension of the fibers is one; 
this is immediate. And if the fibers are of dimension ≥ 2, if V and W are orthogonal 
vertical vectors in M2, then g(V,W ) = 0 and T (V,W ) = T (W,V ). Then for U2 = V +W

by (17), we have

g(T2(V, V ), X2) + g(T2(W,W ), X2) + 2g(T2(V,W ), X2) = 0. (18)

Similarly, U2 = V −W in (17) yields

g(T2(V, V ), X2) + g(T2(W,W ), X2) − 2g(T2(V,W ), X2) = 0. (19)

Taking the difference of (18) and (19), we have for any two orthogonal vertical vector 
fields V and W on M2, T2(V,W ) = 0. Thus we can write for any vertical V , W and 
horizontal X2 on M2,

g(T2(V,W ), X2) = 0

and hence T2(V,W ) = 0, which shows that ϕ2 has totally geodesic fibers. Again, from 
(16), we have

g(g(U1, U1)W1 + T1(U1, U1), X1) = 0.

This gives

T1(U1, U1) = −g(U1, U1)W1 = g(U1, U1)(−∇ψ).

By the same lines as above, for any vertical vector fields V , W on M1,

T1(V,W ) = g(V,W )(−∇ψ).

Consequently, the above equation shows that ϕ1 has totally umbilical fibers with mean 
curvature vector field
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H1 = −∇ψ.

This proves our theorem. □
Now, we have the following immediate corollaries.

Corollary 3.4. Let ϕ = (ϕ1, ϕ2) : M = M1 ×f M2 → N = N1 × N2 be a Clairaut Rie
mannian warped product submersion with r = eψ and horizontal integrable distribution. 
Let Lℋ1 , Lℋ2 denote the leaves of the horizontal foliation of ℋ1 and ℋ2, and ℱ𝒱1 ,ℱ𝒱2

denote the fibers of ϕ1 and ϕ2, respectively. Then we have the following: 

(i) M1 locally splits as a twisted product M1 = Lℋ1 ×ψ ℱν1 and consequently ˜︂M1, the 

universal cover of M1, splits as ˜︂M1 = ˜︃Lℋ1 ×ψ
˜︃ℱν1 . In addition, M2 locally splits as 

a product M2 = Lℋ2 ×ℱν2 and consequently ˜︂M2 = ˜︃Lℋ2 × ˜︃ℱν2 . Hence, M locally 
splits as

M =
(︁
Lℋ1 ×ψ ℱν1

)︁×f

(︁
Lℋ2 ×ℱν2

)︁
.

(ii) If Hess(ψ) ≡ 0, then we have local splitting of M1 as M1 = Lℋ1 × ℱν1 . Hence, 
locally

M =
(︁
Lℋ1 ×ℱν1

)︁×f

(︁
Lℋ2 ×ℱν2

)︁
.

Proof. The proof follows from [28, Proposition 3]. □
Corollary 3.5. Let ϕ = (ϕ1, ϕ2) : (M = M1×fM2, g) → (N = N1×ρN2, g

′) be a Clairaut 
Riemannian warped product submersion with connected fibers and r = eψ. Let θ be a 
function on N such that for all x ∈ M , we have θ(ϕ(x)) = 1, then ϕ = (ϕ1, ϕ2) :
(M, g) → (N, θ2g′) is a Clairaut Riemannian warped product submersion with r = eψ.

Proof. Clearly, for X,Y ∈ ℋp,

(θ(ϕ(p)))2g′(ϕ∗X,ϕ∗Y ) = (θ(ϕ(p)))2g(X,Y ) = g(X,Y )

and hence,

ϕ = (ϕ1, ϕ2) : (M, g) → (N, θ2g′)

is a Riemannian warped product submersion. In fact, it is a Clairaut Riemannian warped 
product submersion by Theorem 3.3. □
Corollary 3.6. Let ϕ = (ϕ1, ϕ2) : (M = M1×fM2, g) → (N = N1×ρN2, g

′) be a Clairaut 
Riemannian warped product submersion with connected fibers and r = eψ. Let θ be a 
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positive function on M such that 𝒱∇θ = 0, then ϕ = (ϕ1, ϕ2) : (M, θ2g) → (N, g′) is a 
Clairaut Riemannian warped product submersion with r = θeψ.

Corollary 3.7. Let ϕ = (ϕ1, ϕ2) : (M = M1×fM2, g) → (N = N1×ρN2, g
′) be a Clairaut 

Riemannian warped product submersion with connected fibers and r = eψ. Then ϕ =
(ϕ1, ϕ2) : (M, e−2fg) → (N, g′) is a Clairaut Riemannian warped product submersion 
with r = 1.

Corollary 3.8. Let ϕ = (ϕ1, ϕ2) : (M = M1×fM2, g) → (N = N1×ρN2, g
′) be a Clairaut 

Riemannian warped product submersion with r = eψ. Then, we have the Laplacian of ψ,

Δψ = Δℋ1ψ.

Proof. Since ϕ is a Clairaut Riemannian warped product submersion, the fibers of ϕ are 
connected, ∇ψ is horizontal, and ∇ψ|M2 = 0. Now, in some neighborhood of a fixed point 
p ∈ M , we choose a parallel basis {E1

1 , . . . , E
1
m1−n1

, Ẽ1
m1−n1+1, . . . , Ẽ

1
m1

, E2
1 , . . . , E

2
m2−n2

, 
Ẽ2

m2−n2+1, . . . , Ẽ
2
m2

}, where {E1
i }m1−n1

i=1 ⊂ Γ(𝒱1), {Ẽ1
j }m1

j=m1−n1+1 ⊂ Γ(ℋ1), {E2
i }m2−n2

i=1
⊂ Γ(𝒱2) and {Ẽ2

j }m2
j=m2−n2+1 ⊂ Γ(ℋ2) denote the orthonormal frames of the vertical 

and horizontal distributions of ϕ1 and ϕ2, respectively. Then

Δ𝒱1ψ =
m1−n1∑︂
i=1 

Hessψ(E1
i , E

1
i ) =

m1−n1∑︂
i=1 

g
(︂
∇E1

i
∇ψ,E1

i

)︂

= −
m1−n1∑︂
i=1 

g
(︂
∇E1

i
E1

i ,∇ψ
)︂

= 0.

Similarly, we can show that Δ𝒱2ψ = 0 and Δℋ2ψ = 0. This yields Δψ = Δℋ1ψ. □
Now, we construct some examples of the Clairaut Riemannian warped product sub

mersions.

Example 3.9. Let ϕ2 : (M, g) → (N, g′) be a Riemannian submersion with connected and 
totally geodesic fibers. Let θ be a function on N and the metric gθ on M given by:

gθ(X,Y ) = g(X,Y ), gθ(X,U) = 0, gθ(U, V ) = e−2θ◦ϕ2g(U, V ),

for any X,Y ∈ 𝒳ℋ(M), U, V ∈ 𝒳𝒱(M). This makes ϕ1 : (M, gθ) → (N, g′) a Clairaut 
Riemannian submersion, where ϕ1 = ϕ2 on M . Similarly to [11, Example 1.8], it is 
easy to see that the fibers of ϕ1 are totally umbilical with the mean curvature vector 
field H1 = ∇(θ ◦ ϕ2). Now consider ϕ = (ϕ1, ϕ2) : (M1×fM2, h) → (N1×ρN2, h

′), with 
M1 = (M, gθ), M2 = (M, g), N1 = N2 = (N, g′), equipped with warped product metrics 
h = gθ+f2 g and h′ = g′+ρ2 g′, where f = eθ◦ϕ2 and ρ is given by ρ◦ϕ2 = f . Then ϕ is a 
Clairaut Riemannian warped product submersion with r = eψ, where ∇ψ|M1 = ∇(θ◦ϕ2)
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and ∇ψ|M2 = 0. This gives a wide class for examples of Clairaut Riemannian warped 
product submersions, where one can vary ϕ2 and get new examples.

Example 3.10. Consider a map ϕ1 :
(︁
R4, g1

)︁ → (︁
R3, g′1

)︁
, where g1, g

′
1 both are standard 

metrics, defined by

ϕ1(x1, x2, x3, x4) =
(︃√︂

x2
1 + x2

2, x3, x4

)︃
.

Then ϕ1 is a Clairaut Riemannian submersion with r = eθ for θ = ln
(︂√︁

x2
1 + x2

2

)︂
. The 

fibers of ϕ1 are totally umbilical with mean curvature vector field

H1 = −
(︄

x2√︁
x2

1 + x2
2

∂

∂x1
+ x1√︁

x2
1 + x2

2

∂

∂x2

)︄
= −∇θ.

Also consider the projection map ϕ2 :
(︁
Rn+k, g2

)︁ → (Rn, g′2), where g2, g
′
2 both are the 

standard metrics, defined by

ϕ2(y1, y2, . . . , yn, yn+1, . . . , yn+k) = (y1, y2, . . . , yn).

Then ϕ2 is a Riemannian submersion with totally geodesic fibers, and hence a Clairaut 
Riemannian submersion trivially. Now consider ϕ = (ϕ1, ϕ2) : (R4×fRn+k, g) →
(R3×ρRn, g′), with g = g1 + f2 g2 and g′ = g′1 + ρ2 g′2, where f and ρ are given by 
ρ ◦ ϕ1 = f . Then ϕ is a Clairaut Riemannian warped product submersion with r = eψ, 
where ∇ψ|M1 = ∇θ and ∇ψ|M2 = 0.

Now we classify all the Clairaut Riemannian warped product submersions from Rn, 
considered as a warped product manifold. We will use the following notation to describe 
a bundle map. A fiber bundle (E,B, π, F ) is indicated as

F → E
π −→ B

where B is the base space, E is the total space, F is the fiber, and π is the bundle map 
of the fiber bundle.

Example 3.11. Let M = Rm+1, M1 = R+ = [0,∞), M2 = Sm. Then M = M1 ×f M2, 
where f : R+ → R+ : r ↦→ r is the warping function and the warped product metric 
is g = dr2 + r2dθ2. Then any Clairaut Riemannian warped product submersion ϕ =
(ϕ1, ϕ2) : (M = M1×fM2, g) → (N = N1×ρN2, g

′) with r′ = eψ is classified as follows: 

(1) N1 = [a, b), for some a, b ∈ R and ρ : [a, b) → R+ given by ρ(y) = y − a

b− y 
. Then, from 

the relation ρ ◦ ϕ1 = f , we have ϕ1 : R+ → [a, b) defined by ϕ1(x) = a + bx

1 + x 
.
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(2) N1 = [0,∞) = R+ and ρ : R+ → R+ is a diffeomorphism. Then, from the relation 
ρ ◦ ϕ1 = f , ϕ1 : R+ → R+ is also a diffeomorphism.

In both cases, we have at any p ∈ R+, 𝒱p = ker(ϕ1∗p) = {0} and ℋp = (ker(ϕ1∗p))⊥ =
{ ∂
∂r}, where { ∂

∂r} is the basis of TpR+ ∼ = R. Also,

∇f = ∂

∂r
, hence, ∇ψ|M1 = ∇f

f
= 1

r

∂

∂r
.

Now, we want ϕ2 : Sm → N2 to be a Riemannian submersion with totally geodesic fibers. 
Assuming 1 ≤ dim(fiber of ϕ2) ≤ m− 1, then as a fiber bundle ϕ2 is one of the following 
types, as classified in [14]: 

(a) S1 → S2n+1 ϕ2 −→ CP (n) for n ≥ 2
(b) S3 → S4n+3 ϕ2 −→ QP (n) for n ≥ 2
(c) S1 → S3 ϕ2 −→ S2 (︁ 1

2
)︁

(d) S3 → S7 ϕ2 −→ S4 (︁ 1
2
)︁

(e) S7 → S15 ϕ2 −→ S8 (︁ 1
2
)︁

4. Harmonicity

In this section, we study the harmonicity for Clairaut Riemannian warped product 
submersions. To obtain harmonic conditions, we need their second fundamental form, 
the tension field, etc. We recall these concepts here. The second fundamental form ∇ϕ∗
of a map ϕ : (M, g) → (N, g′) between two Riemannian manifolds is defined as in [23]

(∇ϕ∗)(X,Y ) = ∇̃Xϕ∗Y − ϕ∗∇XY

for any local vector fields X,Y on M, where ∇ is the Levi-Civita connection of M and 
∇̃ is the pullback of the connection ∇′ of N to the induced vector bundle ϕ−1(TN). 
Furthermore, the tension field τ(ϕ) is defined as the trace of ∇ϕ∗, that is

τ(ϕ) =
m ∑︂
i=1 

(∇ϕ∗)(Ei, Ei),

where {Ei}1≤i≤m is a local orthonormal frame around a point p ∈ M . Moreover, we say 
that ϕ is a harmonic map if and only if τ(ϕ) vanishes at each point p ∈ M . Using these 
concepts, we have the following result.

Proposition 4.1. Let ϕ = (ϕ1, ϕ2) : (M = M1×fM2, g) → (N = N1×ρN2, g
′) be a 

Clairaut Riemannian warped product submersion with r = eψ. Then ϕ is harmonic if 
and only if either H1 = 0 = ∇ψ or (m1 − n1) = (m2 − n2) = 0.
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Proof. Here

τ(ϕ) = trace(∇ϕ∗) =
m1+m2∑︂
k=1 

(∇ϕ∗)(Ek, Ek),

where {E1, . . . , Em1+m2} is a basis of (M1 ×f M2). Hence,

τ(ϕ) = τkerϕ∗(ϕ) + τ (kerϕ∗)⊥(ϕ) = τ𝒱(ϕ) + τℋ(ϕ).

Now,

τ𝒱(ϕ) =
m1−n1∑︂
i=1 

(∇ϕ∗)(E1
i , E

1
i ) +

m2−n2∑︂
a=1 

(∇ϕ∗)(E2
a, E

2
a)

= ϕ∗

(︄
m1−n1∑︂
i=1 

T (E1
i , E

1
i )
)︄

+ ϕ∗

(︄
m2−n2∑︂
a=1 

T (E2
a, E

2
a)
)︄

= ϕ∗

(︄
m1−n1∑︂
i=1 

T1(E1
i , E

1
i )
)︄

+ ϕ∗

(︄
m2−n2∑︂
a=1 

[T2(E2
a, E

2
a) − g(E2

a, E
2
a)∇(ln f)]

)︄

= ϕ∗

(︄
m1−n1∑︂
i=1 

g(E1
i , E

1
i )(−∇ψ)

)︄
+ ϕ∗

(︄
m2−n2∑︂
a=1 

−g(E2
a, E

2
a)∇ψ

)︄

= ϕ1∗
(︂
− (m1 − n1)∇ψ

)︂
+ ϕ1∗

(︂
− (m2 − n2)∇ψ

)︂
= ϕ∗

(︂
− {(m1 − n1) + (m2 − n2)}∇ψ

)︂
.

Also,

τℋ(ϕ) =
m1∑︂

j=m1−n1+1
(∇ϕ∗)(Ẽ1

j , Ẽ
1
j ) +

m2∑︂
b=m2−n2+1

(∇ϕ∗)(Ẽ2
b , Ẽ

2
b )

= 0.

Consequently,

τ(ϕ) = τ𝒱(ϕ) + τℋ(ϕ) = ϕ∗(−{(m1 − n1) + (m2 − n2)}∇ψ) + 0.

This implies that τ(ϕ) = 0 if and only if ϕ∗(−{(m1 − n1) + (m2 − n2)}∇ψ) = 0, that 
is, either (m1 − n1) + (m2 − n2) = 0 or ∇ψ = 0. But ϕ1 and ϕ2 are Riemannian 
submersions, so m1 −n1 ≥ 0 and m2 −n2 ≥ 0, and thus (m1 −n1)+ (m2 −n2) = 0 gives 
(m1 − n1) = (m2 − n2) = 0. □

Thus, we conclude that:
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Corollary 4.2. Let ϕ = (ϕ1, ϕ2) : (M = M1×fM2, g) → (N = N1×ρN2, g
′) be a Clairaut 

Riemannian warped product submersion with r = eψ. Then ϕ is harmonic if and only if 
either M is a product or dim(M1) = dim(N1) and dim(M2) = dim(N2).

5. Curvature relations

In this section, we derive formulae for the Riemann curvatures, Ricci curvatures, 
and sectional curvatures for the source manifold M of a Clairaut Riemannian warped 
product submersion ϕ with r = eψ. In the sequel, ϕ = (ϕ1, ϕ2) : M = M1 ×f M2 → N =
N1×ρN2 will denote a Clairaut Riemannian warped product submersion with r = eψ and 
Xi, Yi, Zi, Hi ∈ Γ(ℋi), Ui, Vi,Wi, Fi ∈ Γ(𝒱i), 1 ≤ i ≤ 2. In addition, {E1

i |i = 1, . . . ,m1−
n1} ⊂ Γ(𝒱1), {Ẽ1

j |j = m1 − n1 + 1, . . . ,m1} ⊂ Γ(ℋ1), {E2
a|a = 1, . . . ,m2 − n2} ⊂ Γ(𝒱2)

and {Ẽ2
b |b = m2−n2+1, . . . ,m2} ⊂ Γ(ℋ2) denote the orthonormal frames of the vertical 

and horizontal distributions of ϕ1 and ϕ2, respectively, in some neighborhood of a fixed 
point p ∈ M .

In what follows, R, R1, and R2 denote the Riemannian curvature tensors of M , M1, 
and M2, respectively, and ˆ︁R, ˆ︂R1 and ˆ︂R2 denote the Riemannian curvature tensors of 
fibers of ϕ, ϕ1 and ϕ2, respectively. Then, by [6], we have the following lemma.

Lemma 5.1. Let M = M1 ×f M2 be a warped product manifold. Let Hessf denote the 
Hessian of f . If E1, F1, G1 ∈ Γ(M1) and E2, F2, G2 ∈ Γ(M2), then: 

(i) R(E1, F1)G1 = R1(E1, F1)G1,
(ii) R(E1, F2)F1 = Hessf (E1,F1)

f F2,
(iii) R(E1, F1)F2 = R(F2, G2)E1 = 0,
(iv) R(E1, F2)G2 = − g(F2,G2)

f ∇E1(∇f),

(v) R(E2, F2)G2 = R2(E2, F2)G2 + ∥∇f∥2

f2 (g(E2, G2)F2 − g(F2, G2)E2).

Using appropriate applications of Lemmas 2.5, 2.6, 5.1, and Clairaut condition of The
orem 3.3 together with the curvature relations mentioned in Section 2, and performing 
some straightforward computations, we obtain the following relations.

Theorem 5.2. Let ϕ = (ϕ1, ϕ2) : (M = M1 ×f M2, g) → (N = N1 ×ρN2, g
′) be a Clairaut 

Riemannian warped product submersion with r = eψ. Then for any Xi, Yi, Zi, Hi ∈
Γ(ℋi), Ui, Vi,Wi, Fi ∈ Γ(𝒱i), 1 ≤ i ≤ 2, the following relations hold: 

(1) R(U1, V1,W1, F1) = ˆ︂R1(U1, V1,W1, F1) − ∥∇ψ∥2[g(U1, F1)g(V1,W1)
−g(U1,W1)g(V1, F1)],

(2) R(U2, V2,W2, F2) = ˆ︂R2(U2, V2,W2, F2) − 2∥∇ψ∥2[g(U2, F2)g(V2,W2)
−g(U2,W2)g(V2, F2)],

(3) R(U1, V1,W1, X1) = g(U1,W1)g(∇V1∇ψ,X1) − g(V1,W1)g(∇U1∇ψ,X1),
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(4) R(U2, V2,W2, X2) = 0,
(5) R(U1, X1, Y1, V1) = −g(U1, V1) Hessψ(X1, Y1) −X1(ψ)Y1(ψ)g(U1, V1)

+g(∇U1(A(X1, Y1)), V1) + g(A(X1, V1), A(Y1, U1)),
(6) R(U2, X2, Y2, V2) = g(∇U2(A(X2, Y2)), V2) + g(A(X2, V2), A(Y2, U2))

−∥∇ψ∥2 g(X2, Y2)g(U2, V2),
(7) R(X1, Y1, Z1, H1) = R∗

1(X1, Y1, Z1, H1) + 2 g(A(Z1, H1), A(X1, Y1))
+g(A(Y1, H1), A(X1, Z1)) + g(A(X1, H1), A(Y1, Z1)),

(8) R(X2, Y2, Z2, H2) = R∗
2(X2, Y2, Z2, H2) + 2 g(A(Z2, H2), A(X2, Y2))

+g(A(Y2, H2), A(X2, Z2)) + g(A(X2, H2), A(Y2, Z2)) + ∥∇ψ∥2
[︂
g(X2, Z2)g(Y2, H2)

−g(Y2, Z2)g(X2, H2)
]︂
,

(9) R(U1, U2, V1, V2) = g(U1, V1)g(U2, V2)||∇ψ||2,
(10) R(X1, X2, Y1, Y2) = 1 

f Hessf (X1, Y1)g(X2, Y2),
(11) R(U1, U2, V2, X1) = − 1 

f Hessf (U1, X1)g(U2, V2),
(12) R(U1, U2, V2, V2) = 0 = − 1 

f g(U2, V2)g(∇U1∇f, V2),
(13) R(X1, U2, V2, U1) = − 1 

f Hessf (X1, U1)g(U2, V2),
(14) R(X1, U2, V2, Y1) = − 1 

f Hessf (X1, Y1)g(U2, V2),
(15) R(U1, X2, Y2, V1) = − g(U1, V1)g(X2, Y2)||∇ψ||2,
(16) R(U1, X2, Y2, X1) = − 1 

f Hessf (U1, X1)g(X2, Y2),
(17) R(X1, X2, Y2, V1) = − 1 

f Hessf (X1, V1)g(X2, Y2),
(18) R(X1, X2, Y2, Y1) = − 1 

f Hessf (X1, Y1)g(X2, Y2),
(19) R(U1, U2, V1, E1) = 0, for any E1 ∈ Γ(TM1),
(20) R(U1, U2, V1, X2) = 0,
(21) R(X1, X2, Y1, E1) = 0, for any E1 ∈ Γ(TM1),
(22) R(X1, X2, Y1, U2) = 0,
(23) R(E2, G2, E1, F ) = 0, for any E1 ∈ Γ(TM1), E2, G2 ∈ Γ(TM2) and F ∈ Γ(TM),
(24) R(U1, U2, V2, X2) = 0,
(25) R(U1, U2, Y2, V2) = 0,
(26) R(U1, U2, Y2, Y1) = 0,
(27) R(U1, U2, Y2, Y2) = 0,
(28) R(X1, U2, V2, E2) = 0, for any E2 ∈ Γ(TM2),
(29) R(X1, U2, Y2, E) = 0, for any E ∈ Γ(TM).

Remark 5.3. From Theorem 5.2, we observe that for Ui, Vi,Wi ∈ 𝒱i, i = 1, 2, we have

𝒱R(U1, V1,W1) = ˆ︂R1(U1, V1,W1) − ∥∇ψ∥2[g(V1,W1)U1 − g(U1,W1)V1],

𝒱R(U2, V2,W2) = ˆ︂R2(U2, V2,W2) − 2∥∇ψ∥2[g(V2,W2)U2 − g(U2,W2)V2],

ℋR(U1, V1,W1) = g(U1,W1)∇V1∇ψ − g(V1,W1)∇U1∇ψ,

ℋR(U2, V2,W2) = 0.
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Let sec, sec1, and sec2 denote the sectional curvatures of M , M1, and M2, respectively, 
and ˆsec, ˆsec1 and ˆsec2 denote the sectional curvatures of the fibers of ϕ, ϕ1 and ϕ2, 
respectively. Then, by direct computation using Theorem 5.2, the following relations for 
the sectional curvature can be obtained.

Corollary 5.4. Let ϕ = (ϕ1, ϕ2) : (M = M1×f M2, g) → (N = N1×ρN2, g
′) be a Clairaut 

Riemannian warped product submersion with r = eψ. Then for any Xi, Yi, Zi, Hi ∈
Γ(ℋi), Ui, Vi,Wi, Fi ∈ Γ(𝒱i), 1 ≤ i ≤ 2, the following relations hold: 

(1) sec(U1, V1) = sec1(U1, V1) = ˆsec1(U1, V1) − ||∇ψ||2,
(2) sec(U2, V2) =

[︂
sec2(U2, V2) − ∥∇ψ∥2

]︂
=

[︂
ˆsec2(U2, V2) − 2 ∥∇ψ∥2

]︂
,

(3) sec(X1, Y1) = 1 
∥X1∧Y1∥2

[︂
R∗

1(X1, Y1, Y1, X1) − 3∥A(X1, Y1)∥2
]︂
,

(4) sec(X2, Y2) = 1 
∥X2∧Y2∥2

[︂
R∗

2(X2, Y2, Y2, X2) − 3∥A(X2, Y2)∥2
]︂
− ||∇ψ||2,

(5) sec(U1, X1) = −∥U1∥2[Hessψ(X1,X1)+(X1(ψ))2]+∥AX1U1∥2

∥U1∥2∥X1∥2 ,

(6) sec(U2, X2) = ∥A(X2,U2)∥2

∥U2∥2∥X2∥2 − ∥∇ψ∥2.

Now, we compute the Ricci curvatures using Theorem 5.2. Let Ric, Ric1, and Ric2
denote the Ricci curvatures of M , M1, and M2, respectively. And R̂ic, ˆRic1 and ˆRic2

denote the Ricci curvature of fibers of ϕ, ϕ1 and ϕ2, respectively. And Ricℋi(Xi, Yi) =
Ricrange ϕi∗(ϕi∗Xi, ϕi∗Yi), for i = 1, 2. Then, we have the following relations.

Corollary 5.5. Let ϕ = (ϕ1, ϕ2) : (M = M1×f M2, g) → (N = N1×ρN2, g
′) be a Clairaut 

Riemannian warped product submersion with r = eψ. Then for any Xi, Yi, Zi, Hi ∈
Γ(ℋi), Ui, Vi,Wi, Fi ∈ Γ(𝒱i), 1 ≤ i ≤ 2, the following hold:

(1) Ric(U1, V1) =R̂ic1(U1, V1) − (m1 − n1 + m2)∥∇ψ∥2
1g(U1, V1)

− g(U1, V1)Δℋ1(ψ) + traceℋ1
[︂
g(A(., U1), A(., V1))

]︂
,

(2) Ric(U2, V2) =R̂ic2(U2, V2) + traceℋ2
[︂
g(A(., U2), A(., V2))

]︂
− (︁

Δℋ1ψ + (m1 − n1 + 2m2 − n2 − 1)∥∇ψ∥2)︁ g(U2, V2),

(3) Ric(X1, Y1) = Ricℋ1(X1, Y1) − [m2 + (m1 − n1)]
[︂
Hessψ(X1, Y1) + X1(ψ)Y1(ψ)

]︂
+ div𝒱1(A(X1, Y1)) − 3 traceℋ1

[︂
g(A(X1, .), A(Y1, .))

]︂
+ trace𝒱1

[︂
g(A(X1, .), A(Y1, .))

]︂
,

(4) Ric(X2, Y2) = Ricℋ2(X2, Y2) −
[︂
(m1 − n1 + m2)∥∇ψ∥2 + Δℋ1ψ

]︂
g(X2, Y2)

+ div𝒱2(A(X2, Y2)) − 3 traceℋ2
[︂
g(A(X2, .), A(Y2, .))

]︂
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+ trace𝒱2
[︂
g(A(X2, .), A(Y2, .))

]︂
.

Proof. Recall that {E1
i |i = 1, . . . ,m1 − n1} ⊂ Γ(𝒱1), {Ẽ1

j |j = m1 − n1 + 1, . . . ,m1} ⊂
Γ(ℋ1), {E2

a|a = 1, . . . ,m2 − n2} ⊂ Γ(𝒱2) and {Ẽ2
b |b = m2 − n2 + 1, . . . ,m2} ⊂ Γ(ℋ2)

denote the orthonormal frames of the vertical and horizontal distributions of ϕ1 and ϕ2, 
respectively, in some neighborhood of a fixed point p ∈ M . Then,

Ric(U1, V1) =
m1−n1∑︂
i=1 

R(E1
i , U1, V1, E

1
i ) +

m1∑︂
j=m1−n1+1

R(Ẽ1
j , U1, V1, Ẽ

1
j )

+
m2−n2∑︂
a=1 

R(E2
a, U1, V1, E

2
a) +

m2∑︂
b=m2−n2+1

R(Ẽ2
b , U1, V1, Ẽ

2
b ). (20)

Using Theorem 5.2, we compute

∑︂
i 

R(E1
i , U1, V1, E

1
i ) =

∑︂
i 

[︂
R̂1(E1

i , U1, V1, E
1
i ) − ∥∇ψ∥2

(︂
g(E1

i , E
1
i )g(U1, V1)

− g(E1
i , V1)g(U1, E

1
i )
)︂]︂

= R̂ic1(U1, V1) − (m1 − n1 − 1)∥∇ψ∥2g(U1, V1), (21)∑︂
j

R(Ẽ1
j , U1, V1, Ẽ

1
j ) =

∑︂
j

R(V1, Ẽ
1
j , Ẽ

1
j , U1)

=
∑︂
j

[︂
− g(V1, U1) Hessψ(Ẽ1

j , Ẽ
1
j ) − Ẽ1

j (ψ)Ẽ1
j (ψ)g(U1, V1)

+ g(∇V1(A(Ẽ1
j , Ẽ

1
j )), U1) + g(AẼ1

j
V1, AẼ1

j
U1)

]︂
= −

[︂
Δℋ1ψ + ∥∇ψ∥2

]︂
g(U1, V1) +

∑︂
j

g(AẼ1
j
U1, AẼ1

j
V1), (22)

∑︂
a 

R(E2
a, U1, V1, E

2
a) =

∑︂
a 

R(V1, E
2
a, E

2
a, U1) = −

∑︂
a 

g(U1, V1)g(E2
a, E

2
a)∥∇ψ∥2

= −(m2 − n2)∥∇ψ∥2g(U1, V1), (23)

and

∑︂
b 

R(Ẽ2
b , U1, V1, Ẽ

2
b ) =

∑︂
b 

R(V1, Ẽ
2
b , Ẽ

2
b , U1) =

∑︂
b 

− g(U1, V1)g(Ẽ2
b , Ẽ

2
b )∥∇ψ∥2

= −n2∥∇ψ∥2g(U1, V1). (24)

Substituting the values from (21), (22), (23) and (24) in (20) we obtain
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Ric(U1, V1) =R̂ic1(U1, V1) +
[︂
(m1 − n1 + m2)∥∇ψ∥2 + Δℋ1ψ

]︂
g(U1, V1)

−
∑︂
j

g(AẼ1
j
U1, AẼ1

j
V1). (25)

This implies (1). Similarly, we can establish (2), (3) and (4). □
6. Geometric implications of curvature relations

This section is dedicated to the applications of the curvature relations obtained in the 
previous section. We present each case individually in the subsections.

6.1. Local symmetry

In this subsection, we discuss the local symmetry of the fibers of a Clairaut Rieman
nian warped product submersion ϕ. We know that a Riemannian manifold is locally 
symmetric if and only if ∇R ≡ 0 [27]. Using this fact, we have the following result.

Theorem 6.1. Let ϕ = (ϕ1, ϕ2) : (M = M1 ×f M2, g) → (N = N1 ×ρN2, g
′) be a Clairaut 

Riemannian warped product submersion with r = eψ and ∥∇ψ∥ = 1. If M is locally 
symmetric, then the fibers of ϕ1 and ϕ2 are also locally symmetric.

Proof. Since M is symmetric, we have (∇ER)(U, V,W ) = 0 for all E,U, V,W ∈
Γ(kerϕ∗). This implies that

𝒱(∇ER)(U, V,W ) = 0 and ℋ(∇ER)(U, V,W ) = 0.

Thus, for any E1, U1, V1,W1 ∈ Γ(kerϕ1∗), we have

0 = 𝒱(∇E1R)(U1, V1,W1)

= 𝒱∇E1(R(U1, V1,W1)) − 𝒱R(∇E1U1, V1,W1) − 𝒱R(U1,∇E1V1,W1)

− 𝒱R(U1, V1,∇E1W1).

Employing Equation (3), Lemma 2.5, and Theorem 3.3, the above equation yields

0 = 𝒱∇1
E1

(𝒱R(U1, V1,W1) + ℋR(U1, V1,W1)) − 𝒱R(ˆ︁∇1
E1

U1, V1,W1)

+ R(∇ψ, V1,W1)g(E1, U1) − 𝒱R(U1, ˆ︁∇1
E1

V1,W1) + R(U1,∇ψ,W1)g(E1, V1)

− 𝒱R(U1, V1, ˆ︁∇1
E1

W1) + R(U1, V1,∇ψ)g(E1,W1).

Using Remark 5.3 and the fact ∥∇ψ∥2 = 1 into the above equation, we get
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0 =ˆ︁∇1
E1

( ˆ︁R1(U1, V1,W1)) − 𝒱∇1
E1

(g(V1,W1)U1) + 𝒱∇1
E1

(g(U1,W1)V1)

+ T1(E1,ℋR(U1, V1,W1))

− ˆ︁R1(ˆ︁∇1
E1

U1, V1,W1) + g(V1,W1)ˆ︁∇1
E1

U1 − g(ˆ︁∇1
E1

U1,W1)V1

− ˆ︁R1(U1, ˆ︁∇1
E1

V1,W1) + g(ˆ︁∇1
E1

V1,W1)U1 − g(U1,W1)ˆ︁∇1
E1

V1

− ˆ︁R1(U1, V1, ˆ︁∇1
E1

W1) + g(V1, ˆ︁∇1
E1

W1)U1 − g(U1, ˆ︁∇1
E1

W1)V1.

Since we have T1(E1,ℋR(U1, V1,W1)) = 0, we conclude that

(ˆ︁∇1
E1

ˆ︁R1)(U1, V1,W1) = 0.

Hence, the fibers of ϕ1 are locally symmetric. In addition, proceeding similarly, using 
Remark 5.3, Lemma 2.5, and Theorem 5.2, we can show that the fibers of ϕ2 are also 
locally symmetric. □
Corollary 6.2. In the setting of the above theorem, the fibers of ϕ1 and ϕ2 are locally 
symmetric subspaces of M . Moreover, if we suppose that the leaves of the horizontal 
spaces of ϕ1 and ϕ2 are integrable and complete, then they must also be locally symmetric 
subspaces of M . Consequently, locally,

M = (ℒℋ1 ×ψ ℱ𝒱1) ×f (ℒℋ2 ×ℱ𝒱2),

and the universal covering space of M can be written as a warped product

˜︂M = ( ˜︁ℒℋ1 ×ψ
˜︁ℱ𝒱1) ×f ( ˜︁ℒℋ2 × ˜︁ℱ𝒱2).

Proposition 6.3. Suppose that the fibers of ϕ1 and ϕ2 are complete. If M is a space form 
having sectional curvature κ, then the fibers of ϕ1 and ϕ2 are also space forms having 
sectional curvature (κ+ 1) and (κ+ 2), respectively. In addition, if the horizontal spaces 
of ϕ1 and ϕ2 are integrable and complete, they are also space forms having sectional 
curvatures κ and (κ + 1), respectively.

Corollary 6.4. Under the hypothesis of the above proposition, additionally assuming that 
the leaves of the horizontal spaces of ϕ1 and ϕ2 are integrable and complete, we get to 
the following classification:

(i) If k = 0, that is, ˜︂M is isometric to Euclidean space Rm1+m2 , then ˜︁ℱ𝒱1 and ˜︁ℱ𝒱2 are 

isometric to Sm1−n1(1) and Sm2−n2
(︂

1 √
2

)︂
respectively. Also, ˜︁ℒℋ1 and ˜︁ℒℋ2 must be 

totally geodesic submanifolds of Rm1+m2 , so they must be isometric to Rn1 and 
Sn2(1) respectively. Hence, we get

Rm1+m2 =
(︁
Rn1 ×ψ Sm1−n1(1)

)︁×f

(︃
Sn2(1) × Sm2−n2

(︃
1 √
2

)︃)︃
.
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(ii) If k = 1, by a similar argument, we get

Sm1+m2(1) =
(︃
Sn1(1) ×ψ Sm1−n1

(︃
1 √
2

)︃)︃
×f

(︃
Sn2

(︃
1 √
2

)︃
× Sm2−n2

(︃
1 √
3

)︃)︃
.

(iii) If k = −1, then we get

Hm1+m2 =
(︁
Hn1 ×ψ Rm1−n1

)︁×f

(︁
Rn2 × Sm2−n2(1)

)︁
.

6.2. Local conformal flatness

Now we turn to establish the relationship between the local conformal flatness of M
and that of the fibers of M1 and M2. First, we recall that a Riemannian manifold (M, g)
is said to be locally conformally flat if every point p ∈ M has a neighborhood that is 
conformally equivalent to an open subset of Euclidean space. Now, we prove the following 
result.

Theorem 6.5. Let ϕ = (ϕ1, ϕ2) : (M = M1 ×f M2, g) → (N = N1 ×ρN2, g
′) be a Clairaut 

Riemannian warped product submersion with r = eψ. Assume that the fibers of ϕ1 and 
ϕ2 are of dimension ≥ 4. If M is locally conformally flat, then the fibers of ϕ1 and ϕ2
are also locally conformally flat.

Proof. To prove our claim, we use an equivalent criterion given in [16, Theorem 3.2 (6)], 
which says that: the local conformal flatness of (Mn, g), n ≥ 4 is equivalent to: at every 
point p ∈ M and for every quadruple of orthogonal vectors {e1, e2, e3, e4},

sec(e1, e2) + sec(e3, e4) = sec(e1, e4) + sec(e2, e3).

Let p = (p1, p2) ∈ M and {U1, V1,W1, F1} ⊂ ker(ϕ1∗p1) be four orthogonal vectors in 
TpM . Since M is locally conformally flat, we have

sec(U1, V1) + sec(W1, F1) = sec(U1, F1) + sec(V1,W1).

Using Corollary 5.4 in the aforementioned equation, we obtain

ˆsec1(U1, V1) + ˆsec1(W1, F1) = ˆsec1(U1, F1) + ˆsec1(V1,W1).

Note that, as ϕ1 is a Riemannian submersion, its fibers are submanifolds of M1. Hence, 
using the preceding criterion, we conclude that the fibers of ϕ1 are locally conformally 
flat. In addition, one can show the local conformal flatness of the fibers of ϕ2 along 
similar lines. □

We know that a Riemannian manifold (Mm, g),m ≥ 4 is locally conformally flat if 
and only if its Weyl tensor is identically zero (for details, see [17]). Hence, we conclude 
that:
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Corollary 6.6. Under the hypotheses of Theorem 6.5, if M is locally conformally flat, 
then the Weyl tensors of M , ϕ1, and ϕ2 are identically zero. In other words, M , ϕ1, and 
ϕ2 is Weyl flat.

6.3. Trivial warping

In this subsection, as another application of Theorem 5.2, we discuss some of the 
cases where the source manifold M of ϕ admits trivial warping. In what follows, we let 
ϕ = (ϕ1, ϕ2) : (M = M1 ×f M2, g) → (N = N1 ×ρ N2, g

′) be a Clairaut Riemannian 
warped product submersion with connected fibers and r = eψ. Recall that dim(M1) =
m1, dim(M2) = m2, dim(N1) = n1, and dim(N2) = n2.

Theorem 6.7. If ϕ is a Clairaut Riemannian warped product submersion between (M =
M1×f M2, g) and (N = N1×ρN2, g

′) with r = eψ, then the warping function f is trivial 
if 

(i) ψ attains maximum (minimum), provided sec(U,X) ≤ 0 
(︂
≥ 0

)︂
for all U ∈ Γ(𝒱1)

and X ∈ Γ(ℋ1) for m1 > n1,
(ii) ψ attains maximum (minimum), provided sec(X1, X2) ≤ 0 

(︂
≥ 0

)︂
for all Xi ∈

Γ(ℋi), i = 1, 2 for m1 = n1.

Proof. From Theorem 5.2, we have

R(U1, X1, Y1, V1) = − g(U1, V1) Hessψ(X1, Y1) −X1(ψ)Y1(ψ)g(U1, V1)

+ g(∇U1(AX1Y1), V1) + g(AX1V1, AY1U1),

where U1, V1 ∈ Γ(𝒱1) and X1, Y1 ∈ Γ(ℋ1). Consider parallel orthonormal bases 
{E1

i |i = 1, . . . ,m1 − n1} ⊂ Γ(𝒱1), {Ẽ1
j |j = m1 − n1 + 1, . . . ,m1} ⊂ Γ(ℋ1) of Γ(M1)

in a neighborhood of some fixed point p ∈ M . Then the aforementioned equation yields,∑︂
i 

∑︂
j

R(E1
i , Ẽ

1
j , Ẽ

1
j , E

1
i )

= −
∑︂
i 

g(E1
i , E

1
i )

∑︂
j

Hessψ(Ẽ1
j , Ẽ

1
j ) −

∑︂
i 

g(E1
i , E

1
i )

∑︂
j

g(∇ψ, Ẽ1
j )2

+
∑︂
i 

∑︂
j

g(∇E1
i
(A(Ẽ1

j , Ẽ
1
j )), E1

i ) +
∑︂
i 

∑︂
j

g(A(Ẽ1
j , E

1
i ), A(Ẽ1

j , E
1
i )).

Consequently,∑︂
i,j 

sec(E1
i , Ẽ

1
j ) = −(m1 − n1) Δℋ1ψ − (m1 − n1) ∥∇ψ∥2

1 +
∑︂
i,j 

∥A(Ẽ1
j , E

1
i )∥2.
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We have Δψ = Δℋ1ψ [by Corollary 3.8] and A(Ẽ1
j , E

1
i ) = ℋ∇Ẽ1

j
E1

i = 0. Also, recall 
that ∇ψ|2 = 0. Thus, we have∑︂

i,j 
sec(E1

i , Ẽ
1
j ) = −(m1 − n1) Δψ − (m1 − n1) ∥∇ψ∥2. (26)

By hypothesis, sec(U,X) ≤ 0 for all U ∈ Γ(𝒱1) and X ∈ Γ(ℋ1), then sec(E1
i , Ẽ

1
j ) ≤ 0

for all i = 1, . . . ,m1 − n1 and j = m1 − n1, . . . ,m1. Then from (26), we have

(m1 − n1) 
[︂
Δψ + ∥∇ψ∥2

]︂
≥ 0. (27)

Fix a smooth function θ : M → R. Then consider the elliptic operator acting on C∞(M)
with respect to θ, defined in [12] as Δθ := Δ −∇θ. In particular, choosing θ = −ψ, we 
obtain

Δ−ψψ = Δψ + ∥∇ψ∥2.

Then from (27), we have

(m1 − n1) Δ−ψψ ≥ 0. (28)

Since ϕ1 is a Riemannian submersion, we know m1 − n1 ≥ 0. 

(i) If (m1 − n1) > 0, then from (28), we have Δ−ψψ ≥ 0 (that is, ψ is subharmonic 
with respect to Δ−ψ). Then, invoking the strong maximum principle, we have that 
if ψ attains a maximum, then ψ is constant.

(ii) If m1 = n1, we use Theorem 5.2 (17), which states that for any Xi, Yi ∈ Γ(ℋi), i =
1, 2, we have

R(X1, X2, Y2, Y1) = − 1 
f

Hessf (X1, Y1)g(X2, Y2).

Proceeding similarly to above, we get∑︂
j,b 

sec(Ẽ1
j , Ẽ

2
b ) = −n2

[︂
Δψ + ∥∇ψ∥2

]︂
.

By hypothesis, sec(X1, X2) ≤ 0 for all Xi ∈ Γ(ℋi), i = 1, 2, then 
∑︁

j,b sec(Ẽ1
j , Ẽ

2
b ) ≤

0 for all j = 1, . . . ,m1 and b = m2 − n2 + 1, . . . ,m2, and consequently we have 
Δ−ψψ ≥ 0, that is, ψ is subharmonic. Then, invoking the strong maximum princi
ple, we see that if ψ attains a maximum, then ψ is constant.

Hence, in both cases M = M1 ×M2. □
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Thus, we have the following immediate corollary.

Corollary 6.8. Within the framework of Theorem 6.7, if M1 is compact, then M has 
trivial warping and becomes a product manifold.

Theorem 6.9. Let ϕ be a Clairaut Riemannian warped product submersion between (M =
M1×fM2, g) and (N = N1×ρN2, g

′) with r = eψ. Suppose that M has constant sectional 
curvature κ and M1 is compact. Then the warping function f is trivial, and in this case 
M and consequently, M1 and M2 are flat.

Proof. Without loss of generality, we assume that κ > 0. If κ < 0, then the argument 
follows in a similar way. Since M1 is compact, ψ reaches a maximum and a minimum. 
Then by Theorem 6.7, f is trivial and thus M becomes a product. To prove the flatness, 
we argue as follows:
For any Ei, Fi ∈ Γ(Mi), i = 1, 2, we have from Lemma 5.1,

R(E1, F2, F1, E2) = Hessf (E1, F1)
f

g(F2, E2). (29)

Since f is constant, Hessf (E1, F1) = 0. Also, M having constant sectional curvature κ
implies that

R(E1, F2, F1, E2) = κ 
[︂
g(E1, E2)g(F2, F1) − g(E1, F1)g(F2, E2)

]︂
.

Then, (29) gives κ g(E1, F1) g(F2, E2) = 0. Thus, κ = 0 and therefore, M is flat. More
over, Lemma 5.1 ensures that M1 and M2 are flat. 
In addition, if κ = 0, then by a similar argument, f is constant. Consequently, M , M1
and M2 are flat by virtue of Lemma 5.1. □
Remark 6.10. Let ˜︂M denote the universal cover of M . In the aforementioned setup, we 
have ˜︂M = Rm1/Γ1 ×Rm2 or ˜︂M = Rm1/Γ1 ×Rm2/Γ2, where Γi = Iso(Rmi), i = 1, 2.

Corollary 6.11. Let ϕ = (ϕ1, ϕ2) : M = M1 ×f M2 → N = N1 ×ρ N2 be a Clairaut 
Riemannian warped product submersion with connected fibers. Under the hypothesis of 
Theorem 6.9, if M1 is compact, then N has non-positive sectional curvature.

6.4. Einstein condition

This subsection is devoted to exploring the geometry of Clairaut warped product 
submersion when M is Einstein. By [2], we know that a Riemannian manifold (M, g) is 
Einstein if its Ricci tensor satisfies Ric = λg, where λ is a constant. Finally, we conclude 
the section by investigating a question posed in [2] as an extended set-up of Clairaut 
warped product submersion. We start with the following results.
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Theorem 6.12. Let ϕ = (ϕ1, ϕ2) : (M = M1×fM2, g) → (N = N1×ρN2, g
′) be a Clairaut 

Riemannian warped product submersion with connected fibers, integrable horizontal dis
tribution, and r = eψ. If M has a constant sectional curvature, then the fibers of ϕi are 
Einstein if mi − ni ≥ 3, for i = 1, 2.

Proof. For any U1, V1 ∈ Γ(𝒱1), from Corollary 5.5 we have

R̂ic1(U1, V1) = Ric(U1, V1) +
[︂
(m1 − n1 + m2)∥∇ψ∥2 + Δℋ1ψ 

]︂
g(U1, V1)

−
∑︂
j

g(AẼ1
j
U1, AẼ1

j
V1).

Using the fact that M has constant sectional curvature sec, we have

Ric(U1, V1) = sec(m1 + m2 − 1)g1(U1, V1).

Also, from the assumption that the horizontal distribution is integrable, we have A = 0. 
Thus, from the above equation, we have the following:

R̂ic1(U1, V1) =
[︂
(m1 + m2 − 1) sec+(m1 − n1 + m2)∥∇ψ∥2 + Δℋ1ψ 

]︂
g(U1, V1).

If dimension of the fibers of ϕ1 is m1 − n1 ≥ 3, then invoking Schur’s Lemma, we can 
conclude that the fibers of ϕ1 are Einstein and consequently,

(m1 + m2 − 1) sec+(m1 − n1 + m2)∥∇ψ∥2 + Δℋ1ψ = C1 (constant) . (30)

By a similar argument, the fibers of ϕ2 are Einstein if dimension of the fibers of ϕ2 is 
m2 − n2 ≥ 3 and we get,

(m1 + m2 − 1) sec+(m1 − n1 + 2m2 − n2 − 1)∥∇ψ∥2 + Δℋ1ψ = C2 (constant). □
(31)

Corollary 6.13. In the same set-up of Theorem 6.12, we find that ψ is a distance function 
(that is, ∥∇ψ∥2 = 1) with constant Δψ.

Proof. Comparing the equations (30) and (31), we get Δψ = C (constant) and

(m2 − n2 − 1)∥∇ψ∥2 = C2 − C1 ,

which shows that ψ is a distance function. □
Theorem 6.14. Let ϕ = (ϕ1, ϕ2) : (M = M1 ×f M2, g) → (N = N1 ×ρ N2, g

′) be a 
Clairaut Riemannian warped product submersion with r = eψ with connected fibers. If 
M is Einstein, then the fibers of ϕ1 and ϕ2 have constant scalar curvatures. Moreover, 
the scalar curvature restricted to the horizontal space of ϕ2 is also constant.
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Proof. From Corollary 5.5, we have for U1, V1 ∈ Γ(𝒱1),

R̂ic1(U1, V1) = Ric(U1, V1) + (m1 − n1 + m2)∥∇ψ∥2
1g(U1, V1)

+ g(U1, V1)Δℋ1(ψ) −
m1∑︂

j=m1−n1+1
g(A(Ẽ1

j , U1), A(Ẽ1
j , V1)).

If M is Einstein with Ric = λg, that is Ric(U1, V1) = λg(U1, V1), then we affirm,

R̂ic1(U1, V1) =
[︂
λ + (m1 − n1 + m2)||∇ψ||21 + Δℋ1(ψ)

]︂
g(U1, V1)

−
m1∑︂

j=m1−n1+1
g(A(Ẽ1

j , U1), A(Ẽ1
j , V1)).

Taking trace over the basis {E1
i |i = 1, . . . ,m1 − n1} of 𝒱1, we have

ˆsec1 =
[︂
λ + (m1 − n1 + m2)||∇ψ||21 + Δℋ1(ψ)

]︂
(m1 − n1)

−
m1−n1∑︂
i=1 

m1∑︂
j=m1−n1+1

g(A(Ẽ1
j , E

1
i ), A(Ẽ1

j , E
1
i )).

Differentiating with respect to U1, we have

∇U1 ˆsec1 =(m1 − n1)∇U1

[︁
λ + (m1 − n1 + m2)∥∇ψ∥2 + Δℋ1ψ

]︁
−

m1−n1∑︂
i=1 

m1∑︂
j=m1−n1+1

∇U1

[︂
g(A(Ẽ1

j , E
1
i ), A(Ẽ1

j , E
1
i ))

]︂
,

which shows that ∇U1 ˆsec1 = 0 and hence ˆsec1 is constant. That is, the fibers of ϕ1 have 
constant scalar curvature. Similarly, we can show that the fibers of ϕ2 also have constant 
scalar curvature.

Now we proceed to prove the last statement.
From Corollary 5.5, we have for X2, Y2 ∈ Γ(ℋ2),

Ricℋ2(X2, Y2) =Ric(X2, Y2) +
[︁
(m1 − n1 + m2)∥∇ψ∥2 + Δℋ1ψ

]︁
g(X2, Y2)

− div𝒱2(AX2Y2) + 3
∑︂
b 

g(AX2Ẽ
2
b , AY2Ẽ

2
b ) −

∑︂
a 

g(AX2E
2
a, AY2E

2
a).

If M is Einstein with Ric = λg, that is, Ric(X2, Y2) = λg(X2, Y2), then

Ricℋ2(X2, Y2) =
[︁
λ + (m1 − n1 + m2)∥∇ψ∥2 + Δℋ1ψ

]︁
g(X2, Y2)

− div𝒱2(AX2Y2) + 3
∑︂
b 

g(AX2Ẽ
2
b , AY2Ẽ

2
b ) −

∑︂
a 

g(AX2E
2
a, AY2E

2
a).

(32)
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Taking trace over the basis {Ẽ2
b | b = m1 − n1 + 1, . . . ,m2} ⊂ ℋ2, we have

secℋ2 =
[︁
λ + (m1 − n1 + m2)∥∇ψ∥2 + Δℋ1ψ

]︁
n2

−
∑︂
b 

div𝒱2(AẼ2
b
Ẽ2

b ) + 3
∑︂
b 

g(AẼ2
b
Ẽ2

b , AẼ2
b
Ẽ2

b ) −
∑︂
a,b 

g(AẼ2
b
E2

a, AẼ2
b
E2

a). (33)

Differentiating along X2 ∈ Γ(ℋ2), we get

divℋ2
(︂
Ricℋ2(X2)

)︂
= ∇2

X2
secℋ2 = 0 −

∑︂
a,b 

∇2
X2

g(A2(Ẽ2
b , E

2
a), A2(Ẽ2

b , E
2
a)).

Now, let us take the divergence of (32). Then divℋ2 Ricℋ2(X2) = 0, which implies that 
∇2

X2
secℋ2 = 0 and hence secℋ2 = constant. □

Corollary 6.15. Let ϕ = (ϕ1, ϕ2) : (M = M1 ×f M2, g) → (N = N1 ×ρ N2, g
′) be a 

Clairaut Riemannian warped product submersion with r = eψ with connected fibers. If 
ψ attains the minimum (maximum), then M = M1 ×f M2 is a Riemannian product 
manifold, provided M is Einstein and m2 − (m1 − n1) ≤ 0

(︂
≥ 0

)︂
.

Proof. By Theorem 6.14, secℋ2 is constant. Then employing (33) we obtain,[︂
λ + (m1 − n1 + m2)∥∇ψ∥2 + Δℋ1ψ

]︂
n2 = μ(constant) (34)

Assuming that the leaves of ϕ1, that is, Lℋ1 are integrable and compact, we have

(m2 + m1 − n1)
∫︂

Lℋ1

∥∇ψ∥2 +
∫︂

Lℋ1

Δℋψ =
∫︂

Lℋ1

(μ− λ n2) .

Thus,

(m2 + m1 − n1)
∫︂

Lℋ1

∥∇ψ∥2 + 0 = (μ− λ n2) · Vol(Lℋ1)

which implies that

m2 + m1 − n1

Vol(Lℋ1) 

∫︂
Lℋ1

∥∇ψ∥2 = (μ− λ n2).

As Lℋ1 is compact, there exists some point p = (p1, p2) ∈ M with p1 ∈ Lℋ1 such 
that ∇ψ(p) = 0, which implies ∥∇ψ(p)∥2 = 0 and consequently, μ = λ n2. Hence, using 
Corollary 3.8, we have from (34),
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(m2 + m1 − n1)∥∇ψ∥2 + Δψ = 0 .

Thus, Δψ ≥ 0 as m2+(m1−n1) ≥ 0, that is, ψ is subharmonic. Then, using the fact that 
Lℋ1 is compact, we find that ψ attains a maximum, and consequently, we establish that 
ψ is constant. If ∇ψ = 0, we find that ψ is constant, which implies that f is constant, 
and hence M admits a trivial warping. □
Question posed in [2]: In order to build new compact Einstein manifolds from the given 
ones, it was questioned in [2]: Does there exist a compact Einstein warped product 
manifold with a non-constant warping function? Indeed, Proposition 5 of [15] answers 
this question by constructing a non-trivial compact Einstein warped product space. 
In analogy, we can ask: Does there exist a compact Einstein warped product manifold 
M = M1 ×f M2 admitting a Clairaut Riemannian warped product submersion with 
r = eψ? We attempt to answer this question in the following theorem.

Theorem 6.16. Suppose that (Lℋ1 , g1) is a manifold and f is a smooth function on Lℋ1

satisfying, for a constant λ ∈ R and m1,m2, n1 ∈ N,

Ricℋ1 = λ g1 + (m2 + m1 − n1)
f

Hessf ,

then f satisfies

f Δf + (m1 + m2 − n1 − 1)∥∇f∥2 + λf2 = μ

for a constant μ ∈ R. Hence, for a compact Einstein space (Lℋ2 , g2) of dimension (m1 +
m2 − n1) with

Ricℋ2 = μ g2,

we can make a compact Einstein warped product space Lℋ1 ×f Lℋ2 with

Ric = λ g ,

where g = g1 + f2 g2, g1, g2 being the Riemannian metrics on Lℋ1 and Lℋ2 respectively. 
Moreover, if we take compact Einstein manifolds ℱ𝒱1 of dimension (m1 − n1) and ℱ𝒱2

of dimension (m2 − n2) satisfying

Ric𝒱1 =
[︃
λ + (m1 − n1 + m2 − 1)

f2 ∥∇f∥2 + 1 
f

Δℋ1f

]︃
g

and

Ric𝒱2 =
[︃
λ + (m1 − n1 + 2m2 − n2 − 2)

f2 ∥∇f∥2 + 1 
f

Δℋ1f

]︃
g,
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respectively, then

M =
(︁
Lℋ1 ×f Lℋ2

)︁×f

(︁ℱ𝒱1 ×ℱ𝒱2
)︁ ∼ = 

(︁
Lℋ1 ×f ℱ𝒱1

)︁×f

(︁
Lℋ1 ×ℱ𝒱2

)︁
is a compact Einstein warped product manifold admitting a Clairaut Riemannian warped 
product submersion ϕ = (ϕ1, ϕ2) with integrable horizontal distribution, whose fibers are 
ℱ𝒱1 and ℱ𝒱2 and the leaves of the horizontal spaces are Lℋ1 and Lℋ2 respectively.

To prove the above theorem, we need to prove the following proposition.

Proposition 6.17. Let ϕ = (ϕ1, ϕ2) : (M = M1 ×f M2, g) → (N = N1 ×ρ N2, g
′) be a 

Clairaut Riemannian warped product submersion with r = eψ with connected fibers. If 
M is Einstein, then the following identity holds for any X1 ∈ Γ(ℋ1):

∇1
X1

Δℋ1ψ + 2 Hessψ(X1,∇ψ) =
[︂
divℋ1(Hessψ +dψ ⊗ dψ)

]︂
(X1).

Proof. For X1, Y1 ∈ Γ(ℋ1), from Corollary 5.5, we have

Ricℋ1(X1, Y1) = Ric(X1, Y1) + (m2 + m1 − n1)
[︂
Hessψ(X1, Y1) + X1(ψ)Y1(ψ)

]︂
− div𝒱1(A(X1, Y1)) −

∑︂
i 

g(AX1E
1
i , AY1E

1
i ) + 3

∑︂
j

g(AẼ1
j
X1, AẼ1

j
Y1).

Since M is Einstein, Ric(X1, Y1) = λ g(X1, Y1). Thus, we have

Ricℋ1(X1, Y1) =λ g(X1, Y1) + (m2 + m1 − n1)
[︂
Hessψ(X1, Y1) + X1(ψ)Y1(ψ)

]︂
− div𝒱1(A(X1, Y1)) −

∑︂
i 

g(AX1E
1
i , AY1E

1
i ) + 3

∑︂
j

g(AẼ1
j
X1, AẼ1

j
Y1).

(35)

Taking trace over {Ẽ1
j | j = m1 − n1 + 1, . . . ,m1}, we get

secℋ1 =λn1 + (m1 − n1 + m2) 
[︂
Δℋ1ψ + ∥∇ψ∥2

]︂
−

∑︂
j

div𝒱1(AẼ1
j
Ẽ1

j )

−
∑︂
i,j 

g(AẼ1
j
E1

i , AẼ1
j
E1

i ) + 3
∑︂
j

g(AẼ1
j
Ẽ1

j , AẼ1
j
Ẽ1

j ),

which reduces to

secℋ1 = λn1 + (m2 + m1 − n1)
[︂
Δℋ1ψ + ∥∇ψ∥2

]︂
−
∑︂
i,j 

g(AẼ1
j
E1

i , AẼ1
j
E1

i ). (36)

Also, we can choose a parallel basis while taking the trace and get
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secℋ1 = λn1 + (m2 + m1 − n1)
[︂
Δℋ1ψ + ∥∇ψ∥2

]︂
.

Differentiating (36) along X1 ∈ Γ(ℋ1), we get

∇1
X1

secℋ1 = (m2 + m1 − n1)
[︁∇1

X1
Δℋ1ψ + ∇1

X1
∥∇ψ∥2]︁

−
∑︂
i,j 

2 g(∇1
X1

(AẼ1
j
E1

i ), AẼ1
j
E1

i ).

Again, using the parallel basis argument, we have

divℋ1 Ricℋ1(X1) = ∇1
X1

secℋ1 = (m2 + m1 − n1)
[︂
∇1

X1
Δℋ1ψ + 2 Hessψ(X1,∇ψ)

]︂
.

(37)

Also from (35), we get

Ricℋ1(X1, Y1) = λ g(X1, Y1) + (m2 + m1 − n1)
(︂
dψ ⊗ dψ + Hessψ

)︂
(X1, Y1)

− div𝒱1(A)(X1, Y1) −
∑︂
i 

(∇E1
i
⊗∇E1

i
)(X1, Y1)

− 3
∑︂
j

(AẼ1
j
◦AẼ1

j
)(X1, Y1),

which shows that

Ricℋ1 =λ g + (m2 + m1 − n1)(Hessψ +dψ ⊗ dψ) − div𝒱1(A)

−
∑︂
i 

(∇E1
i
⊗∇E1

i
) − 3

∑︂
j

(AẼ1
j
◦AẼ1

j
). (38)

Now we take the divergence of (38) and get

divℋ1 Ricℋ1 = λ divℋ1(g) + (m2 + m1 − n1)
[︂
divℋ1(Hessψ +dψ ⊗ dψ)

]︂
− divℋ1(div𝒱1(A)) −

∑︂
i 

divℋ1(∇E1
i
⊗∇E1

i
) − 3

∑︂
j

divℋ1(AẼ1
j
◦AẼ1

j
).

When acted on X1 ∈ Γ(ℋ1), this reduces to

divℋ1 Ricℋ1(X1) = (m2 + m1 − n1)
[︂
divℋ1(Hessψ +dψ ⊗ dψ)

]︂
(X1). (39)

Comparing (37) and (39), we get

∇1
X1

Δℋ1ψ + 2 Hessψ(X1,∇ψ) =
[︂
divℋ1(Hessψ +dψ ⊗ dψ)

]︂
(X1). □ (40)
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Now we come to the proof of Theorem 6.16. We prove the theorem by extending [15, 
Proposition 5], using a similar technique. The required steps follow from Corollary 5.5, 
Equation (40), and the fact that A ≡ 0 for a horizontal integrable distribution.

CRediT authorship contribution statement

Conceptualization, methodology, investigation, validation, writing draft, review, edit
ing, and reading have been performed by all the authors of the paper.

Ethics approval

The submitted work is original and not submitted to more than one journal for si
multaneous consideration.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Funding

Not applicable.

Declaration of competing interest

The authors have no conflict of interest and no financial interests in this article.

Acknowledgements

Arkadeepta Roy gratefully acknowledges Harish-Chandra Research Institute, Praya
graj, India, for its doctoral research fellowship. In addition, all the authors are thankful 
to the reviewer for his/her comments towards improvement.



A. Roy et al. / Bull. Sci. math. 206 (2026) 103764 33

Dedication 

The author, Kiran Meena, dedicates this paper to celebrate the birth of her first child 
(Madhav Meena).

Data availability

No data was used for the research described in the article.

References

[1] K. Aso, S. Yorozu, A generalization of Clairaut’s theorem and umbilical foliations, Nihonkai Math. 
J. 2 (1991) 139--153.

[2] A.L. Besse, Einstein Manifolds, Springer-Verlag, Berlin, Heidelberg, New York, 1987.
[3] R.L. Bishop, B. O’Neill, Manifolds of negative curvature, Trans. Am. Math. Soc. 145 (1969) 1--49.
[4] R.L. Bishop, Clairaut submersions, in: Differential Geometry (in Honor of K. Yano), Kinokuniya, 

Tokyo, 1972, pp. 21--31.
[5] B.Y. Chen, Warped product immersions, J. Geom. 82 (2005) 36--49.
[6] B.Y. Chen, Differential Geometry of Warped Product Manifolds and Submanifolds, World Scientific 

Publishing Co. Pte. Ltd, Singapore, 2017.
[7] B.Y. Chen, Geometry of warped products as Riemannian submanifolds and related problems, Soo

chow J. Math. 28 (2) (2002) 125--156.
[8] B.Y. Chen, F. Dillen, Warped product decompositions of real space forms and Hamiltonian

stationary Lagrangian submanifolds, Nonlinear Anal. 69 (10) (2008) 3462--3494.
[9] I.K. Erken, C. Murathan, Riemannian warped product submersions, Result. Math. 76 (2021) 1--14.

[10] I.K. Erken, C. Murathan, A.N. Siddiqui, Inequalities on Riemannian warped product submersions 
for Casorati curvatures, Mediterr. J. Math. 20 (2) (2023) 1--18.

[11] M. Falcitelli, S. Ianus, A.M. Pastore, Riemannian Submersions and Related Topics, World Scientific, 
River Edge, NJ, 2004.

[12] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 
2001.

[13] H.M. El-Hasan, R. Phelan, F. Wilhelm, Do Riemannian submersions preserve positive intermediate 
Ricci curvature?, arXiv preprint, arXiv:2507.17839 [math.DG].

[14] R. Escobales Jr, Submersions from spheres, Bull. Am. Math. Soc. 79 (1) (1973) 71--74.
[15] D.-S. Kim, Y.H. Kim, Compact Einstein warped product spaces with nonpositive scalar curvature, 

Proc. Am. Math. Soc. 131 (8) (2003) 2573--2576.
[16] R.S. Kulkarni, Curvature structures and conformal transformations, J. Differ. Geom. 4 (4) (1970) 

425--451.
[17] J.M. Lee, Introduction to Riemannian Manifolds, 2nd ed., Springer, Cham, 2018.
[18] K. Meena, T. Zawadzki, Clairaut conformal submersions, Bull. Malays. Math. Sci. Soc. 47 (4) (2024) 

1--22.
[19] K. Meena, H.M. Shah, B. Şahin, Geometry of Clairaut conformal Riemannian maps, J. Aust. Math. 

Soc. 118 (3) (2025) 368--406.
[20] K. Meena, B. Şahin, H.M. Shah, Riemannian warped product maps, Result. Math. 79 (2) (2024) 

1--30.
[21] J.D. Moore, Isometric immersions of Riemannian products, J. Differ. Geom. 5 (1971) 159--168.
[22] J.F. Nash, The imbedding problem for Riemannian manifolds, Ann. Math. 63 (1956) 20--63.
[23] T. Nore, Second fundamental form of a map, Ann. Mat. Pura Appl. 146 (1) (1986) 281--310.
[24] S. Nölker, Isometric immersions of warped products, Differ. Geom. Appl. 6 (1996) 1--30.
[25] B. O’Neill, The fundamental equations of a submersion, Mich. Math. J. 13 (4) (1966) 459--469.
[26] B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 

1983.
[27] P. Petersen, Riemannian Geometry, third edition, Springer, London, 2016.
[28] R. Ponge, H. Reckziegel, Twisted products in pseudo-Riemannian geometry, Geom. Dedic. 48 (1) 

(1993) 15--25.

http://refhub.elsevier.com/S0007-4497(25)00190-3/bib1E5C747C53AED03AF2FA7D39D79034CFs1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib1E5C747C53AED03AF2FA7D39D79034CFs1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib3C012C6800B6323CCD401C45F1DD3D1Ds1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib288FDA9889080EB948963FF4E9DA29FEs1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib002252A30946AEDAF4804FDF622E6D5Fs1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib002252A30946AEDAF4804FDF622E6D5Fs1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib0B36A56EA8D2FC923F77F9C229AAD46Bs1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib2BD344963A72418172DF984C2EE0A911s1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib2BD344963A72418172DF984C2EE0A911s1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib6F1AB05FCCB187AD28E77AFF9C8315B4s1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib6F1AB05FCCB187AD28E77AFF9C8315B4s1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bibA3E8CC4C5B80448BDA87FB031EB131E1s1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bibA3E8CC4C5B80448BDA87FB031EB131E1s1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib860C275911C5DD503A98B8114298A553s1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib12C714DD72797C15C90F8B3CB9D7177Fs1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib12C714DD72797C15C90F8B3CB9D7177Fs1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib7238BBB0648BE2C712A502E3154B90FEs1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib7238BBB0648BE2C712A502E3154B90FEs1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib99F2F30E479EB026C226F31C5A4DA95Cs1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib99F2F30E479EB026C226F31C5A4DA95Cs1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib3C891B3196E26DCC95373BC92B5BC614s1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib3C891B3196E26DCC95373BC92B5BC614s1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib97A39D3DFDB673172B5F0E2BF0BDABC5s1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib3E72BB3E0B981AFE237D35BD207078DFs1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib3E72BB3E0B981AFE237D35BD207078DFs1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bibB51FFBF798A383FE186EB7A70084F84Es1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bibB51FFBF798A383FE186EB7A70084F84Es1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib96161B9FDD440369F327B7560250594Cs1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib561D7CD81C4423A0403DC48514D54ADBs1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib561D7CD81C4423A0403DC48514D54ADBs1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bibFE011455FEEED0A429374A1DFCD6E104s1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bibFE011455FEEED0A429374A1DFCD6E104s1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib5056F29FA881C98DFCFDBD1F556BF8A3s1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib5056F29FA881C98DFCFDBD1F556BF8A3s1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib41B6CDB1196D3E838B734C2A09FDCCCEs1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bibBD4B3EA7EC23F66F6703AE4C8DA143F1s1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib0D4D267297A57AA7B0EE63FC4449909Bs1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib968E6C5BC78F6CE22E6F6BF03E6B73A4s1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib468E10C6F959CC55C95AD98A85E3646Ds1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib26230D5BEFFEE3D14D54EF4C02674C1Ds1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib26230D5BEFFEE3D14D54EF4C02674C1Ds1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib0520B16D7B1CCD931979D3394B23C54Es1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bibD12932A7C04411DD74F6E5822B3E133Fs1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bibD12932A7C04411DD74F6E5822B3E133Fs1


34 A. Roy et al. / Bull. Sci. math. 206 (2026) 103764 

[29] A. Pressley, Elementary Differential Geometry, Springer, London, 2010.
[30] B. Şahin, Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and Their Applica

tions, Academic Press, 2017.
[31] R. Tojeiro, Conformal immersions of warped products, Geom. Dedic. 128 (2007) 17--31.
[32] J. Yadav, H. Kaur, G. Shanker, On the geometry of Riemannian warped product maps, arXiv 

preprint, arXiv:2505.01865v1 [math.DG].

http://refhub.elsevier.com/S0007-4497(25)00190-3/bib7E5582893ACC27B84803A4FB4E87F75Es1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bibFB2A6897DC5E7652333409501E8EAAFEs1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bibFB2A6897DC5E7652333409501E8EAAFEs1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bib2B042015E82E8C3163E6258F37F3CCB6s1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bibA5FB84CB02EAB22407B60A1AB5D4794Bs1
http://refhub.elsevier.com/S0007-4497(25)00190-3/bibA5FB84CB02EAB22407B60A1AB5D4794Bs1

	Geometry of Clairaut Riemannian warped product submersions
	1 Introduction
	2 Preliminaries
	3 Clairaut Riemannian warped product submersions
	4 Harmonicity
	5 Curvature relations
	6 Geometric implications of curvature relations
	6.1 Local symmetry
	6.2 Local conformal flatness
	6.3 Trivial warping
	6.4 Einstein condition

	CRediT authorship contribution statement
	Ethics approval
	Consent to participate
	Consent for publication
	Code availability
	Funding
	Declaration of competing interest
	Acknowledgements
	Data availability
	References


